
SMART: Simultaneous Multi-Agent Recurrent
Trajectory Prediction

Supplementary Material

Sriram N N1, Buyu Liu1, Francesco Pittaluga1, and Manmohan Chandraker1,2

1 NEC Laboratories America
2 UC San Diego

Abstract. In this supplementary, we provide more details for our pro-
posed simulator in Sec. 1 and for the proposed method for trajectory
prediction, SMART in Sec. 2. We further provide quantitative analysis
and qualitative comparisons with a few prior works in Sec. 3. The ac-
companying video includes an overview of the method and qualitative
visualizations of our predictions.

1 Further Details for Simulator

In this section, we provide more details about reference velocity sampling, low-
level controller and also specify the range of values for IDM [3] parameters used
in our simulation.

1.1 Velocity Sampling:

Figure 1 shows several real trajectories (x and y axes represent distance travelled
in meters in longitudinal and lateral directions) and a plot between distance
before turn and average velocity for real trajectory samples. We calculate distance
before turn as the distance travelled by the vehicle before it starts executing
a turn maneuver and average velocity is the mean velocity through the course
of the trajectory before turn. Interestingly, we found distance before taking
turns is highly correlated to average velocity. Specifically, we can see a trend of
decrease(or slowing down) in average velocity while approaching an intersection
with an intention of making a turn maneuver. To this end, we identify distance to
intersections as useful feature and demonstrate that it helps in mimicking the real
data. We label every velocity profile from the real data with a value of distance
before turn or average velocity, for turn and straight maneuvers respectively.
Here, by velocity profile we mean a series of vehicle velocities at every timestep
for the simulation period. We identify the nearest neighbor velocity profile in the
real data using the above mentioned features with the values from the simulated
vehicle. We use the identified velocity profile as reference for the simulated vehicle
to achieve at every timestep. We also add gaussian noise with zero mean and
unit variance to add diversity in the sampled velocity profiles.



2 S. N N et al.

Fig. 1: Left: Shows several {left,right and straight} trajectories executed by
vehicles in real world on Argoverse tracking (ArgoT) data sampled at 1Hz.
Right: Velocity vs Distance to turn plot for tracklets in Argoverse tracking for
the entire dataset. For plotting purposes we plot distance to turn to be zero for
straight maneuvers. Here each dot represents a velocity profile for 7 seconds.

1.2 Low Level Controller:

Low-level controller simulates the desired behavior governed by vehicle dynamics
module. It takes input from maneuver identification, IDM[3] and MOBIL[4], and
produces state changes for the simulated vehicle. It consists of longitudinal and
lateral proportional controllers that give out required velocity commands. The
lane centerline is used as the reference trajectory for the simulated vehicle to follow.
The velocity obtained from the lateral controller is converted to appropriate
steering commands that helps in tracking the reference trajectory. Let v be the
current velocity of the vehicle, xlateral be the lateral position from the lane and
vlateral be the lateral velocity then steering angle φ is obtained through the
following set of equations:

vlateral = −kplateral ∗ (xlateral + ε) (1)

ψreq = arcsin(
vlateral
v

) (2)

ψref = ψfuture + ψreq (3)

ψ̇ = kpheading ∗ ψref (4)

φ = arctan(
L

v
ψ̇) (5)

where kplateral and kpheading are controller parameters, L represents length of
the vehicle and ε acts as an offset noise in tracking the lane. ψreq is the heading
that needs to be compensated for aligning with the lane center, while ψfuture is
the required heading that needs to be achieved for future timesteps. A heading
controller provides a heading rate ψ̇ for the given reference heading ψref . Equation
5 calculates the steering angle based on current velocity v, vehicle length L and
heading rate ψ̇.



SMART - Supplementary Material 3

Table 1: Parameters for Intelligent Driver Model.
Parameter Values Units

Desired velocity vo Reference profile m/s
Free acceleration exponent δ 4.0 -

Safety time gap T range(0.5, 2.5) s
Desired safety distance so range(0.5, 4.0) m
Comfortable acceleration a 1.5± 0.5 m/s2

Comfortable deceleration b 2.0± 0.5 m/s2

1.3 Intelligent Driver Model:

Tab 1 shows values and sample space for parameters in Intelligent Driver Model[3].
We sample these parameters randomly to increase diversity of driving patterns.

2 Further Details for SMART

2.1 Network Architecture:

In this section, we provide more details of our network architecture.

Latent Encoder: It takes concatenated past and future trajectories and a
corresponding trajectory label as input. The embedding layer and LSTM contain
16 dimensions. The fully connected layer has 512 and 128 units that produce 16
dimensional µ and σ as outputs.

Convolutional Encoder: Our encoder receives input of HxWx25 dimension.
It consists of 6 convolutional layers with first layer being 3D convolution and
followed by 2D ones. The number of filters are 16,16,32,32,64 and 64 from the
very first to the sixth layer, respectively, with alternativing stride 1 and stride 2.
We set the kernel size to 1x1x4 in the first layer and that of the remaining layers
to 3x3.

ConvLSTM Decoder It consists of alternating ConvLSTMs and 2D transposed
convolutional layers. The size of hidden state or output filters in every pair
of ConvLSTMs and transposed convolutions are 64,32 and 16, respectively.
Convolutions share the same kernel size 3x3. And the transposed convolutions
have a stride of 2. We add skip connections from encoder layers 2 and 4 to
corresponding second and third ConvLSTM layers in the decoder.

Finally, a ConvLSTMs with state-pooling operation is further put to the end
of decoder. It has a hidden state of 16 channels with 1x1 kernel size. We also
concatenate features from first 3D convolution before feeding it to ConvLSTM
layer. In addition, we include one last convolution layer that generates 2 channels
with 1x1 kernel size as the output layer.



4 S. N N et al.

2.2 Learning Details

The models are trained using Adam optimizer [2] with a learning rate of 0.008
and a batch size of 6. The model is trained on ArgoF for 10 epochs and 400 epochs
on both ArgoT and P-ArgoT. We train the models at the trajectory frequency
of 5hz and interpolate the results at the desired frequency. In order to avoid
exploding gradients, we apply gradient clipping with L2 norm of 1.0. Further,
during the training procedure, we augment the data by randomly rotating the
scene and trajectories to reduce over-fitting. All models are implemented using
Tensorflow 2.0 and trained with a NVIDIA RTX 2080Ti GPU.

2.3 Future work

SMART methods capabilities can be extended by incorporating traffic rules to
reduce the number of invalid trajectories that span in the wrong direction (Figure
6d main paper). Furthermore, explicitly modelling interactions among multiple
agents improve predictions and reduce invalid trajectory collisions with other
agents in the scene.

3 Further Results

We provide more qualitative and quantitative analysis in this section.

Realism of Simulated Data To evaluate the realism of our simulated dataset,
we perform PCA on a random set of real and simulated trajectories, followed by
a Gaussian KDE on the PCA-transformed real trajectories. The calculated log
likelihood for both real and simulated data on real fitted KDE for 1000 random
datapoints are 2.25 and 2.19. This indicates that the simulated distribution falls
very close to the real one. A qualitative plot of real and simulated trajectories
after PCA transformation is shown in Figure 2.

Fig. 2: Qualitative plot of PCA performed on 1000 random real and simulated
trajectories from Argo Tracking



SMART - Supplementary Material 5

Train set MATF-GAN[5] S-GAN[1] SMART

ArgoT

P-ArgoT

Fig. 3: Qualitative comparison of methods tested on Argo Tracking(ArgoT) with
only training on ArgoT and training on P-ArgoT and fine tuning on ArgoT.
Significant improvement in the diversity of prediction results can be observed in
S-GAN[1] when the model is initialized using our simulated data.

Visualization for diversity Figure 3 shows comparison of prediction outputs
for methods trained only on real data and methods trained on simulated data
and fine-tuned on real data. Clear improvement in the diversity can be observed
with S-GAN[1]. But it does not capture such diversity with the scene context
attributing to higher deviation with the ground truth for the same number of
samples while our method captures diversity coupled with the semantics in the
right way enabling it to provide outputs towards different modes.

Results on KITTI We also conduct experiments to showcase the generalization
of our simulated dataset. Specifically, we train models either on simulated or real
ArgoT dataset and test them on KITTI. Our results in Tab. 2 show that models
trained with our simulated but diverse dataset actually generate better results
than that trained with real dataset. Such observation further shows that our
simulated dataset generalizes better in general and has not been overfitted to
particular dataset.

Table 2: Quantitative results on KITTI dataset. ‘[ ]’ denotes the training set.
Model 1.0(sec) 2.0(sec) 3.0(sec) 4.0(sec) 5.0(sec)

KITTI Dataset ‖ADE|FDE|NLL‖
SMART [ArgoT] (crandom) 1.30 2.06 8.45 2.47 4.76 8.50 3.88 7.97 8.75 5.19 9.11 8.93 6.14 11.2 8.98

SMART [P-ArgoT](crandom) 1.14 1.77 5.33 2.12 3.94 6.03 3.29 6.55 6.61 4.53 8.69 7.13 5.88 9.92 7.58

SMART [ArgoT](cbest) 1.22 1.92 7.10 2.30 4.38 7.42 3.58 7.28 7.87 4.75 8.10 8.174 5.65 9.88 8.28
SMART [P-ArgoT](cbest) 1.03 1.56 5.29 1.89 3.50 5.95 2.94 5.77 6.56 4.06 7.60 7.08 5.32 8.71 7.49

Further Qualitative Results Figures 4 and 5 show qualitative comparisons
of the proposed SMART method with other baselines.



6 S. N N et al.

MATF-
GAN[5]

S-GAN[1]

SMART

MATF-
GAN[5]

S-GAN[1]

SMART

MATF-
GAN[5]

S-GAN[1]

SMART

Fig. 4: Qualitative comparison of SMART with other baseline methods. The figure
depicts predicted outputs plotted on left, center, right camera images and top
view images of the scene. Note that for SMART, red, blue and green trajectories
show outputs with different trajectory labels that captures different modes in
the output.



SMART - Supplementary Material 7

MATF-
GAN[5]

S-GAN[1]

SMART

MATF-
GAN[5]

S-GAN[1]

SMART

Fig. 5: Qualitative comparison of SMART with other baseline methods. The figure
depicts predicted outputs plotted on left, center, right camera images and top
view images of the scene. Note that for SMART, red, blue and green trajectories
show outputs with different trajectory labels that captures different modes in
the output.



8 S. N N et al.

References

1. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: Socially
acceptable trajectories with generative adversarial networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 2255–2264 (June
2018). https://doi.org/10.1109/CVPR.2018.00240

2. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

3. Treiber, Hennecke, Helbing: Congested traffic states in empirical observations and
microscopic simulations. Physical review. E, Statistical physics, plasmas, fluids, and
related interdisciplinary topics 62 2 Pt A, 1805–24 (2000)

4. Treiber, M., Kesting, A.: Modeling lane-changing decisions with MOBIL. In: Appert-
Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg,
M. (eds.) Traffic and Granular Flow ’07. pp. 211–221. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

5. Zhao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao, Y., Wang, Y., Wu,
Y.N.: Multi-agent tensor fusion for contextual trajectory prediction. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)


