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Abstract. We propose advances that address two key challenges in fu-
ture trajectory prediction: (i) multimodality in both training data and
predictions and (ii) constant time inference regardless of number of agents.
Existing trajectory predictions are fundamentally limited by lack of diver-
sity in training data, which is difficult to acquire with sufficient coverage of
possible modes. Our first contribution is an automatic method to simulate
diverse trajectories in the top-view. It uses pre-existing datasets and maps
as initialization, mines existing trajectories to represent realistic driving
behaviors and uses a multi-agent vehicle dynamics simulator to generate
diverse new trajectories that cover various modes and are consistent with
scene layout constraints. Our second contribution is a novel method that
generates diverse predictions while accounting for scene semantics and
multi-agent interactions, with constant-time inference independent of the
number of agents. We propose a convLSTM with novel state pooling
operations and losses to predict scene-consistent states of multiple agents
in a single forward pass, along with a CVAE for diversity. We validate
our proposed multi-agent trajectory prediction approach by training and
testing on the proposed simulated dataset and existing real datasets of
traffic scenes. In both cases, our approach outperforms SOTA methods
by a large margin, highlighting the benefits of both our diverse dataset
simulation and constant-time diverse trajectory prediction methods.

Keywords: Diverse trajectory prediction, multiple agents, constant time,
scene constraints, simulation

1 Introduction

The ability to reason about the future states of multiple agents in a scene is an
important task for applications that seek vehicle autonomy. Ideally, a prediction
framework should have three properties. First, it must be able to predict multiple
plausible trajectories in the dominant modes of motion. Second, these trajectories
should be consistent with the scene semantics. Third, it is attractive for several
applications if constant-time prediction can be achieved regardless of the number
of agents in the scene. In this paper, we propose dataset creation and future
prediction methods that help achieve the above three properties (Figure 1).

A fundamental limitation for multimodal trajectory prediction is the lack
of training data with a diverse enough coverage of the possible motion modes
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Fig. 1: Left: Given the map and tracklets, we propose to reconstruct the real
world scene in top-view and simulate diverse behaviors for multiple agents w.r.t.
scene context. Right: The proposed SMART algorithm that is able to generate
context aware and multimodal trajectories for multiple agents.

in a scene. Our first main contribution is a simulation strategy to recreate
driving scenarios from real world data, which generates multiple driving behaviors
to obtain diverse trajectories for a given scene. We construct a graph-based
simulation environment that leverages scene semantics and maps to execute
realistic vehicle behaviors in the top-view. We sample reference velocity profiles
from trajectories executing similar maneuvers in the real world data. Then we
use a variant of the Intelligent Driver Model [37, 24] to model the dynamics
of vehicle driving patterns and introduce lane-change decisions for simulated
vehicles based on MOBIL [38]. We show that training with our simulated datasets
leads to large improvements in prediction outcomes compared to the real data
counterparts that are comparatively limited in both scale and diversity reflected
by a Wasserstein metric.

Several recent works consider deep networks for trajectory prediction for
humans [14, 4, 21, 2, 31] and vehicles [22, 34, 15, 6, 40, 28]. Usually, they consider
interactions among multiple agents, but still operate on single agent basis at infer-
ence time, requiring one forward pass for each agent in the scene. Vehicle motions
are stochastic and depending on their goals, obtaining multimodal predictions for
individual vehicles that are consistent with the scene significantly increases the
time complexity. Our second main contribution addresses this through a novel
approach, Simultaneous Multi-Agent Recurrent Trajectory (SMART) prediction.
To the best of our knowledge, it is the first method to achieve multimodal,
scene-consistent prediction of multiple agents in constant time.

Specifically, we propose a novel architecture based on Convolutional LSTMs
(ConvLSTMs) [39] and conditional variational autoencoders (CVAEs) [33], where
agent states and scene context are represented in the bird-eye-view. Our method
predicts trajectories for n agents with a time complexity of O(1) (Table 1). To
realize this, we use a single top-view grid map representation of all agents in the
scene and utilize fully-convolutional operations to model the output predictions.
Our ConvLSTM models the states of multiple agents, with novel state pooling
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Table 1: Comparison of our method with existing works in terms of complexity,
scene context and interactions. n and K are number of agents and iterations.

Method Social GAN[14] Desire[22] SoPhie[31] INFER[34] MATF GAN[40] Ours

Complexity O(n) O(nK) O(n2) O(n) O(n) O(1)
Scene Context 7 X X X X X

Social Interactions X X X X X X

operations, to implicitly account for interactions among objects and handle
dynamically changing scenarios. To obtain multimodal predictions, we assign
labels to trajectories based on the type of maneuver they execute and query for
trajectories executing specific behaviors at test time. Our variational generative
model is conditioned on this label to capture diversity in executing maneuvers of
various types.

We validate our ideas on both real and simulated datasets and demonstrate
state-of-the-art prediction numbers on both. We evaluate the network perfor-
mance based on average displacement error(ADE), final displacement error(FDE)
and likelihood(NLL) of the predictions with respect to the ground truth. Our
experiments are designed to highlight the importance of methods to simulate
datasets with sufficient realism at larger scales and diversity, as well as a pre-
diction method that accounts for multimodality while achieving constant-time
outputs independent of the number of agents in the scene.

To summarize, our key contributions are:

– A method to achieve constant-time trajectory prediction independent of
number of agents in the scene, while accounting for multimodality and scene
consistency.

– A method to simulate datasets in the top-view that imbibe the realism of
real-world data, while augmenting them with diverse trajectories that cover
diverse scene-consistent motion modes.

2 Related Work

In this section, we briefly summarize datasets available for autonomous driving
and talk about the existing forecasting techniques.
Simulators and Autonomous Driving Datasets: AirSim [32] and CARLA
[10] are autonomous driving platforms with primary target towards testing
learning and control algorithms. SYNTHIA [30] introduces a big volume of
synthetic images with annotations for urban scenarios. Virtual KITTI [12] imitates
KITTI driving scenarios with varying environmental conditions and provide both
pixel level and instance level annotations. Fang et al.[11] shows detectors trained
with augmented lidar point cloud from a simulator provide comparable results
with methods trained on real data. [17] generates images for vehicle detection and
show an improvement in result that a deep neural network trained with synthetic
data performs better than a network trained on real data when the dataset is
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bigger. Similarly, our focus is also to obtain better driving predictions by virtue
of diversity from simulated datasets which emulate realistic driving behaviors.

Until recently, KITTI [13] has been extensively used for evaluation of various
computer vision applications like stereo, tracking and object detection, but has
limited diverse behaviors for a scene. NGSIM [8] provides trajectory information
of traffic participants but the scenes are only limited to highways with fixed lane
traffic. CaliForecasting [29] (unreleased) contains 10K examples with approxi-
mately 1.5 hours of driving data but does not contain any information about
the scene. There are several recently proposed autonomous driving datasets
[15, 7, 6, 5, 26, 1, 18], some of which focus on trajectory forecasting [15, 7, 6, 26].
Rules of the road [15] (unreleased) proposes a dataset with map information for
approximately 83K trajectories in 88 distinct locations. Argoverse [7] proposes
two datasets (Tracking and Forecasting) with HD semantic map information
containing centerlines. Argoverse tracking contains a total of 113 scenes with
tracklet information. While the forecasting dataset is sufficiently large enough
with more than 300K trajectories, it contains 5 seconds trajectory data for only
one vehicle in the scene. In our work, we simultaneously generate trajectories for
all vehicles in the scene and provide trajectory information up to 7 seconds for
each vehicle. NuScenes [5] provides data from two cities with complete sensor
suite information, but the main focus of the dataset is towards object detection
and tracking. We primarily focus on using Argoverse Tracking[7] for simulating
diverse trajectories and to showcase better prediction ability, but also simulate
diverse trajectories for KITTI[13] dataset (please see supplementary material).
Our method can be extended to many published datasets such as Waymo Open
Dataset [1] and Lyft [18].

Forecasting Methods: Motion forecasting has been extensively studied. Kitani
et al. [19] proposes a method based on Inverse Optimal Control (IOC). Social
LSTM [3] uses a recurrent network to model human-human interactions for
pedestrian forecasting. Deo et al. [9] use a similar method as [3] to model
interactions and predict an output distribution over future states for vehicles.
DESIRE [23] uses a CVAE-based [33] approach to predict trajectories up to
4 seconds but requires multiple iterations to align its predictions with scene
context. Sampling multiple trajectories that are semantically aligned might not
be feasible.

Over the recent years, generative models [14, 4, 31, 20, 25] have shown sig-
nificant improvements in pedestrian trajectory prediction. Human trajectories
tend to be stochastic and random while vehicle motions are aligned with the
scene context and are strongly influenced by surrounding vehicle’s behavior.
Outputs from [14, 31] show that it produces more diverse outputs and the output
predictions are spread over a larger area. While more advanced methods [20,
16] show outputs that are tightly coupled with the ground truth. We do not
intend to capture the data distribution in such a fashion but are more focused
towards producing predictions in possible dominant choices of motion[35]. This
also motivates us to use [14] to showcase the ability of simulation strategy in
producing more diverse outputs. Our method capture both these indifference’s
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Fig. 2: The overall pipeline of the proposed simulation strategy. Scene generation
module recreates the specific driving scenarios from datasets. Behavior generation
samples a behavior for simulation and an appropriate reference velocity profile for
every vehicle in the scene. The dynamics simulator tracks the reference velocity
and provides lane changing decisions based on the current traffic condition.

by producing quintessential trajectories that are diverse and at the same time
closely aligned with the ground truth (indicated by our likelihood values).

Recently, MATF GAN[40] uses convolutions to model interactions between
agents, but only shows results on straight driving scenarios and suffers in produc-
ing multimodal outputs. INFER [34] proposes a method based on ConvLSTMs
and [15] uses convolutions to regress future paths. These methods nicely couple
scene context with predicted output, but their predictions are entity-centric and
do not incorporate multi-agent stochastic predictions.

3 Simulated Dataset

The overall pipeline of the proposed simulation strategy is shown in Figure
2. Our simulation engine consists of three main components: scene generation
module, behavior generation module and a dynamics simulation engine. Given
a dataset to recreate and simulate, the scene generation module takes lane
centerline information that can be either acquired through openly available map
information[27] or provided by the dataset. We utilize this information to create
a graph data structure that consists of nodes and edges representing end points of
the lane and lane centerline respectively. This when rendered provides us with a
Birds-Eye-View reconstruction of the local scene. We call this as road graph. The
object instantiation module uses the tracklet’s information from the dataset to
project them on to the generated road graph. We do so by defining a coordinate
system with respect to the ego vehicle and find the nearest edge occupied by
the objects in our graph. This completes our scene reconstruction task. Now,
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for every vehicle that was instantiated in the scene, we find various possible
maneuvers that it can execute given the traffic conditions and road structure
from which, we uniformly sample different vehicle behaviors for our simulation.
We refer to behaviors as vehicles executing different maneuvers like straight, left
turn, right turn and lane changes. To execute such diverse behaviors that are
significantly realistic, we sample appropriate velocity profiles from real dataset
as references that closely resemble the intended behavior that vehicle is planning
to execute. The dynamics simulation module utilizes this reference velocity to
execute the right behavior for every vehicle but at the same time considers the
scene layout and the current traffic conditions to provide a safe acceleration
that can be executed. We simulate every scene for 7 seconds and generate a
maximum of 3 diverse behaviors (Figure 3). The simulation is performed at 10Hz
and output from our simulation consists of vehicle states {x,v, ψ, a, φ}T1 which
represent position, velocity, heading, acceleration and steering over the course of
our simulation. We will now provide a brief description of each component and
refer readers to supplementary material for additional details.

Scene Generation We utilize the lane information from OpenStreetMaps
(OSM) [27] or from datasets like [7] for creating the road graph. For our purposes,
we make use of the road information such as centerline, number of lanes and
one-way information for each road segment. Every bi-directional road centerline is
split based on the specified number of lanes and one-way information. The vehicle
pose information from the dataset is used to recreate exact driving scenarios.

Diverse Behavior Generation Given a particular lane ID (node) on the local
road graph for every vehicle, we depth first explore K possible leaf nodes that
can be reached within a threshold distance. We categorize plausible maneuvers
from any given node into three different categories {left, right, straight}. Prior
to the simulation, we create a pool of reference velocity profiles from the real
data. At simulation time, after sampling a desired behavior, we obtain a Nearest
Neighbor velocity profile for the current scene based on features such as distance
before turn and average velocity, for turn and straight maneuvers respectively.

Fig. 3: Example trajectories executed by a single vehicle under different scenes in
simulation.As shown in this figure, our simulation strategy is able to generate
diverse yet realistic trajectories that align well with scene context.
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Dynamics Simulation The dynamics module utilizes road graph, a behavior
from a pool of diverse plausible ones and a reference velocity that needs to
be tracked for the appropriate behavior. Our dynamics engine is governed by
Intelligent Driver Model (IDM)[37] and MOBIL[38]. Acceleration and lane change
decisions obtained from this dynamics module is fed to a low-level controller that
tries to track and exhibit appropriate state changes in the vehicle behavior. In
order to limit the acceleration under safety limit for the any traffic situation and
to incorporate interactions among different agents in the scene we use an IDM[37]
behavior for the simulated vehicles. The input to an IDM consists of distance to
the leading vehicle s, the actual velocity of the vehicle v, the velocity difference
with the leading vehicle ∆v and provides an output aIDM that is considered safe
for the given traffic conditions. It is given by the equation,

aIDM (s, v,∆v) = a

(
1−

(
v

vo

)δ
−
(
s∗(v,∆v)

s

)2
)
, (1)

where, a is the comfortable acceleration and vo is the desired reference velocity.
δ is an exponent that influences how acceleration decreases with velocity. The
deceleration of the vehicle depends on the ratio of desired minimum gap s∗ to
actual bumper distance s with the leading vehicle.

Lane Change Decisions: We also consider lane changing behavior to add
additional diversity in vehicle trajectories apart from turn based maneuver
trajectories. Lane changing behaviors are modeled based on MOBIL algorithm
from [38]. The following are the parameters that control lane changing behavior:
politeness factor p that influences lane changing if there’s acceleration gain
for other agents, lane changing acceleration threshold ∆ath, maximum safe
deceleration bsafe and bias for particular lane ∆abias. The following equations
govern whether a lane change can be executed,

ãc − ac + p
{

(ãn − an) + (ão − ao)
}
> ∆ath −∆abias, (2)

(ãn − an) > −bnsafe, (ãc − ac) > −bcsafe. (3)

Here, a is the current acceleration and ã represents the new acceleration after lane
change. c, n, o subscripts denote current, new vehicle and old vehicles respectively.

4 SMART

In this section, we will introduce a single representation model to predict trajec-
tories for multiple agents in a road scene such that our predictions are context
aware, multimodal and have constant inference time irrespective of number of
agents. We formulate the trajectory prediction problem as per frame regression
of agents locations over the spatial grid. We will describe our method below in
details.



8 S. N N, et al.

Fig. 4: The overall architecture for SMART framework. The components connected
in green are used only during the training phase. It takes in a single representation
of the scene, to regress per timestep coordinates for the all agents at their
respective location in the spatial grid.

4.1 Problem formulation

Given the lane centerline information L1...m for a scene, we render them in top
view representations such that our scene context map I is of HxWx3 where
channel dimension represents one-hot information of each pixel corresponding to
{road, lane,unknown} road element. Let Xi = {X1

i , X
2
i , ..., X

T
i } denote trajectory

information of ith vehicle from timestep 1...T where each Xt
i = (xi, yi)

t represents
spatial location of the agent in the scene. Our network takes input in the form
of relative coordinates RXi with respect to agent’s starting location. For the ith

agent in the scene, we project RXi at corresponding Xi locations to construct a
spatial location map of states S1...T such that St[Xt

i ] contains relative coordinate
of ith agent at timestep t. RYi =R Xtobs...T

i represents ground truth trajectory.
And we further denote Mt as the location mask representing configuration of
agents in the scene. To keep track of vehicles across timesteps, we construct
a vehicle IDs map V1...T where Vt[Xt

i ] = i. Furthermore, we associate each

trajectory Xtobs,..T
i with a label ci that represents the behavioral type of the

trajectory from one of {straight, left, right} behaviors. And trajectory label
for lane changes falls in one of the three categories. Let C encode grid map
representation of ci such that Ct[Xt

i ] = ci. Note that vehicle trajectories are not
random compared to the human motion. Instead, they depend on behaviors of
other vehicles in the road, which motivates us to classify trajectories based on
different maneuvers.

We follow the formulation proposed in [40, 15, 34] where network takes previous
states S1..tobs as input along with the scene context map I, trajectory label map
C, location mask M and a noise map Z to predict the future trajectories RŶi

for every agent at its corresponding grid map location Xt
i in the scene. Note that
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we do not have a separate head for each agent. Instead, our network predicts a
single future state map Ŝt where each individual agent tries to match RYt

i at t.

4.2 Method

We illustrate our pipeline in Figure 4. Our network architecture comprises of two
major parts, a latent encoder and a conditional generator. We model the temporal
information with the agents previous locations using ConvLSTMs. We further
introduce a state pooling operation to feed agents state information at respective
locations in consecutive timestep. While we provide trajectory specific labels to
capture diverse predictions, we leverage conditional variational generative models
(CVAE[33]) to model diversity in the data for each type of label.

Latent Encoder: It acts as a recognition module Qφ for our CVAE framework
and is only used during our training phase. Specifically, it takes in both the past
and future trajectory information RXi and passes them through an embedding
layer. The embedded vectors are then passed on to a LSTM network to output
encoding at every timestep. The outputs across all the timesteps are concatenated
together into a single vector along with the one hot trajectory label ci to produce
Venc(i). This vector is then passed on through a MLP to obtain µ and σ to
output a distribution Qφ(zi|RXi, ci). Formally,

ohti = LSTM(ht−1
i ,RXt

i )

Venc(i) = [oh1i , ...,
o hTi , ci]

µ, σ = MLP (Venc(i)).

(4)

Conditional Generator: We adapt a U-Net like architecture for the generator.
At any timestep t, the inputs to the network conditional generator are the
following, a scene context map I (HxWx3), a single representation of all agents
current state St (HxWx2), location mask Mt (HxWx1), a one-hot trajectory
specific label for each agent projected at agent specific locations in a grid from
Ct (HxWx3) and a latent vector map Zt (HxWx16) containing zi obtained
from Qφ(zi|RXi, ci) during training phase or sampled from prior distribution
Pv(zi|RXi, ci) at test time. Formally the network input Et is given by:

Et = [I,St,Mt, Ct,Zt], (5)

which is of size HxWx25 for any timestep t. Note that our representation is not
entity centric i.e we do not have one target entity for which we want to predict
trajectories but rather have a global one for all agents.

At each timestep from 1, ..., tobs, we pass the above inputs through the
encoder module. This module is composed of strided convolutions, which encode
information in small spatial dimensions, and passes them through the decoder. The
decoder includes ConvLSTMs and transposed convolutions with skip connections
from the encoder module, and outputs a HxW map. It is then passed on to
another ConvLSTM layer with state pooling operations. The same network is
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shared during observation and prediction phase. A final 1x1 convolution layer is
added to output a 2 channel map containing relative predicted coordinates RXt

i

for the agents in the next timestep.
We use the ground truth agent locations for the observed trajectory and unroll

our ConvLSTM based on the predictions of our network. During the prediction
phase (tobs, ..., T ), the outputs are not directly fed back as inputs to the network
rather the agent’s state is updated to the next location in the scene based on
the predictions. The relative predicted location RX̂t−1

i gets updated to absolute

predicted location X̂t
i to obtain a updated scene state map Ŝt containing updated

locations of all the agents in the scene. Note that using such representations
for the scene is agnostic to number of agents and as the agents next state is
predicted at its respective pixel location it is capable of handling dynamic entry
and exit of agents from the scene.

State-Pooled ConvLSTMs: Simultaneous multi-agent predictions are realized
through state-pooling in ConvLSTMs. Using standard ConvLSTMs for multi-
agent trajectory predictions usually produces semantically aligned trajectories,
but the trajectories occasionally contain erratic maneuvers. We solve this issue
via state-pooling, which ensures the availability of previous state information
when trying to predict the next location. We pool the previous state information
from the final ConvLSTM layer for all the agents spHt−1

i and initialize the next
state with spHt−1

i (for both hidden and cell state) at agents updated locations
and zero vectors at all other locations for timestep t.

Learning: We train both the recognition network Qφ(zi|RXi, ci) and the condi-

tional generator Pθ(Y |E) concurrently. We obtain predicted trajectory RŶ by
pooling values from indexes that agents visited at every timestep. We use two
loss functions in training our CVAE based ConvLSTM network:

– Reconstruction Loss: LR = 1
N

∑N
i ||RYi−RŶi|| that penalizes the predictions

to enable them to reconstruct the ground truth accurately.
– KL Divergence Loss: LKLD = DKL(Qφ(zi|RXi, ci)||Pv(zi|RXi, ci)) . That

regularizes the output distribution from Qφ to match the sampling distribu-
tion Pv at test time.

Test phase: At inference time, we do not have access to trajectory specific labels
ci but rather query for a specific behavior by sampling these labels randomly.
Along with ci for each agent we also sample zi from Pv(zi|RXi, ci). However, Pv
can be relaxed to be independent of the input[33] implying the prior distribution
to be Pv(zi). Pv(zi) := N (0, 1) at test time.

5 Experiments

We evaluate our methods on publicly available Argoverse[7] Tracking(ArgoT) 3

and Forecasting(ArgoF) 4 dataset.We also introduce a simulated dataset based

3 Generated 2044 scenes in total containing multiple trajectories for every scene
4 Argoverse Forecasting for vehicle trajectory prediction is a large scale dataset con-

taining 333,441 (5sec) trajectories captured from 320 hours of driving.
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Table 2: Quantitative measurements on P-ArgoT. We report ADE, FDE (in
meters) and NLL (N=5)

Model 1.0(sec) 2.0(sec) 3.0(sec) 4.0(sec) 5.0(sec)

P-ArgoT ‖ ADE | FDE | NLL‖
LSTM 0.53 0.87 - 1.03 2.01 - 1.62 3.41 - 2.31 5.09 - 3.09 6.98 -
CVAE 0.46 0.73 2.16 0.89 1.72 3.31 1.42 2.98 4.18 2.04 4.49 4.88 2.76 6.26 5.48

MATF Scene [40] 0.98 1.73 - 1.84 3.53 - 2.76 5.48 - 3.72 7.56 - 4.73 9.78 -
MATF GAN [40] 0.78 1.34 3.44 1.45 2.73 4.53 2.17 4.28 5.24 2.94 5.95 5.79 3.76 7.77 6.23

S-GAN[14] 0.42 0.72 2.21 0.85 1.68 3.49 1.36 2.83 4.36 1.93 4.08 5.03 2.54 5.46 5.57

SMART (crandom) 0.73 0.64 3.72 0.84 0.98 3.92 0.94 1.35 4.31 1.15 1.73 4.70 1.38 2.16 5.06
SMART (cbest) 0.58 0.59 3.21 0.59 0.55 3.39 0.60 0.75 3.63 0.98 0.61 3.89 1.02 1.06 4.13

Table 3: Left: Quantitative measurements on ArgoF validation set. (N=6). Right:
Quantitative comparison of different datasets with introduced diversity metrics
based on wasserstein distances.

Model 1.0(sec) 2.0(sec) 3.0(sec)

Argo Forecasting Dataset (ArgoF) ‖ADE|FDE|NLL‖
LSTM 0.76 1.16 - 1.32 2.67 - 2.14 4.71 -
CVAE 1.22 2.27 9.14 2.56 5.32 11.7 4.14 8.94 13.2

MATF Scene [40] 1.56 2.71 - 2.90 5.54 - 4.35 8.17 -
MATF GAN [40] 1.48 2.54 13.5 2.72 5.17 13.6 4.08 8.13 14.0

S-GAN [14] 0.88 1.59 4.12 1.99 4.34 5.74 3.49 8.05 6.80

SMART (crandom) 0.79 0.96 4.59 1.16 1.85 4.76 1.65 3.00 5.18
SMART (cbest) 0.71 0.83 3.56 1.03 1.55 4.05 1.44 2.47 4.61

Datasets Y Wasserstein Ẍ Wasserstein

Mean Median Mean Median

KITTI 0.14 0.04 4.91 3.52
P-KITTI 2.13 0.75 17.64 17.58

ArgoT 0.49 0.20 5.98 2.97
P-ArgoT 0.97 0.12 17.5 17.49

on P-ArgoT and conduct experiments with it. Our simulated dataset utilizes
2000 scene instances from ArgoT to generate scenarios with multiple agents and
trajectory durations of 7 seconds.

We use standard evaluation metrics suggested in previous approaches[7, 40,
34, 14],e.g. Average Displacement Error(ADE), Final Displacement Error(FDE)
and Negative Log Likelihood(NLL) with the ground truth.

We evaluate two versions of SMART, e.g. (SMART(crandom)) and (SMART(cbest)).
For the former, we randomly sample our behavior specific trajectory labels for
evaluation, while for the later we equally sample n trajectories over all the tra-
jectory labels and report the best results across all. We comapare our proposed
methods against the following baselines:

– LSTM: A sequence to sequence encoder-decoder network that regresses future
locations based on the past trajectory [36].

– CVAE: A modified LSTM generator that predicts paths based on the input
latent vector in the form of noise learned from the data distribution [33].

– S-GAN[14]:We implement and evaluate this method on all datasets.
– MATF GAN[40]: We implement it ourselves and evaluate it on all datasets.

Quantitative Results: We first demonstrate that our proposed method,
SMART, can beat the baseline methods. As shown in Tab. 2 and 3(left), our
method can almost always outperform baselines with a large margin, especially
in long-term scenarios. It is also worth noting that final ADE and FDE values of
our method SMART(cbest) are at least 23% and 39% lower than that of others
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Table 4: Results for methods tested on ArgoT. ‘[ ]’ represents the training set.
We report results on the basis of ADE, FDE and NLL (N=5).

Model 1.0(sec) 2.0(sec) 3.0(sec) 4.0(sec) 5.0(sec)

ArgoT ‖ADE|FDE|NLL‖
LSTM [ArgoT] 0.65 1.07 - 1.28 2.53 - 2.07 4.45 - 3.00 6.74 - 4.05 9.31 -
CVAE [ArgoT] 0.45 0.75 1.99 0.90 1.88 3.13 1.52 3.48 4.07 2.30 5.50 4.89 3.21 7.89 5.63

MATF Scene [ArgoT] [40] 1.24 2.20 - 2.39 4.67 - 3.66 7.49 - 5.03 10.4 - 6.45 13.4 -

MATF GAN [ArgoT] [40] 0.97 1.69 5.32 1.82 3.47 6.21 2.75 5.53 6.93 3.77 7.88 7.58 4.90 10.5 8.15
MATF GAN [P-ArgoT] [40] 1.03 1.79 6.32 1.93 3.68 7.51 2.89 5.77 8.43 3.94 8.13 9.19 5.07 10.7 9.77

S-GAN [ArgoT] [14] 0.77 1.35 4.29 1.47 2.79 5.48 2.25 4.47 6.24 3.11 6.38 6.81 4.06 8.54 7.27
S-GAN [P-ArgoT][14] 0.94 1.63 4.84 1.76 3.31 6.00 2.66 5.24 6.74 3.66 7.37 7.30 4.74 9.68 7.75

SMART [ArgoT] (crandom) 0.85 1.06 4.31 1.22 1.87 4.82 1.68 2.98 5.38 2.25 4.30 5.88 2.88 5.70 6.31
SMART [P-ArgoT](crandom) 0.68 0.80 4.12 0.97 1.51 4.29 1.37 2.45 4.71 1.85 3.58 5.13 2.39 4.85 5.51

SMART [ArgoT](cbest) 0.74 0.87 3.85 1.03 1.50 4.02 1.42 2.40 4.42 1.90 3.52 4.84 2.45 4.74 5.24
SMART [P-ArgoT](cbest) 0.61 0.66 3.91 0.84 1.21 3.81 1.16 1.97 4.08 1.56 2.91 4.39 2.02 3.96 4.70

Table 5: Results for methods tested on ArgoT without straight trajectories. ‘[ ]’
represents the training set. We report results on the basis of ADE, FDE(N=5).

Model 1.0(sec) 2.0(sec) 3.0(sec) 4.0(sec) 5.0(sec)

ArgoT ‖ADE|FDE‖
MATF GAN [ArgoT] [40] 1.04 1.80 1.98 3.86 3.08 6.50 4.41 9.91 5.98 14.1

MATF GAN [P-ArgoT] [40] 0.94 1.63 1.79 3.50 2.81 6.00 4.07 9.35 5.61 13.6

S-GAN [ArgoT] [14] 0.94 1.67 1.86 3.64 2.91 5.91 4.12 8.48 5.47 11.4
S-GAN [P-ArgoT][14] 0.93 1.61 1.74 3.30 2.65 5.23 3.65 7.38 4.73 9.75

across all tables. We also observe that SMART(cbest) provides better results
than SMART(crandom). This is due to the fact that SMART(crandom) randomly
samples trajectory behavior labels thus ignores the data distribution. In contrast,
SMART(cbest) is able to capture the diversity for particular label through CVAEs.
Although other methods [14, 40, 22] are also able to generate diverse trajectories,
they have to sample a significant number of trajectories to get a predictions
(or driver intents) exhibiting different behaviors. We later show in Fig. 5 that
our method is able to model data distribution more effectively, e.g. achieves
comparable/better results with less samples.

In Fig. 5(left), we show variation of ADE/FDE values with increasing number
of samples in ArgoF. We observe that our method performs significantly better
even with lower number of samples compared to baselines, which again supports
our claim that methods like [14] requires much more samples to even to get
comparable performance with our method reported in Tab. 3(left). Fig.5(right)

Table 6: Average runtime in seconds to generate one prediction sample in scenes
from Argoverse[7] dataset with increasing number of agents, benchmarked on
RTX2080Ti, 11GB GPU.

No. of Agents 1 2 3 4 5 6 7 8 9 10

SMART .070 .070 .070 .070 .072 .069 .069 .075 .072 .069
S-GAN[14] .024 .034 .044 .054 .062 .071 .082 .090 .102 .108
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shows number of valid predictions produced across all datasets. Here, the validity
is computed based on whether the predicted outputs lie within the road regions.
Compared to baselines, our method is more likely to generate output predictions
that satisfied context constraints.

We also provide analysis on time complexity of existing methods in Tab. 6.
Without sacrificing the performance, our SMART always gives constant inference
time with increasing number of agents.

To demonstrate the effectiveness/informativeness of our simulated dataset,
we further conduct experiments and report numbers in Tab. 4. We test all methods
on ArgoT test set. P-ArgoT in this table denotes that corresponding models are
trained on P-ArgoT and fine-tuned on ArgoT training set. There are two main
observations. Firstly, our methods that initialized with simulated data clearly
achieve much better performance. Such significant performance boost indicates
the benefits of augmenting a dataset with diverse trajectories. Secondly, such
boost is missing in other methods. We argue that this might be attributed to the
ability of the other methods in capturing the diversity in a wrong fashion (See
Figure 3 in supplementary). For instance, S-GAN[14] is unaware of the scene
context, hence when initialized with a model trained on diverse trajectories, the
outputs are more spread thus leads to lower performance with fixed number of
samples. Although MATF[40] includes scene context in its predictions, it has poor
capability in producing multimodal outputs where most of the predictions are
biased towards behavior of particular type (See Figure 3. [40]). To provide further
analysis, and to show that training on simulated data improves diversity for other
methods we report numbers evaluated on non-straight trajectories in Tab 5. As
observed, other methods perform significantly better when when initialized with
simulated model. This observation further demonstrates that our method is able
to capture the diversity strongly coupled with the scene.

Qualitative Results We give some example predictions of our method in Fig. 6.
In general, our predictions align well with scene context and obey traffic rules in
most situations.

Fig. 5: Left:Quantitative results on ArgoF with increasing number of samples.
Average and final displacements of our method is plotted against S-GAN[14].
Right: Percentage of samples(n=30) that produced trajectories inside the road.
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(a) (b) (c) (d)

Fig. 6: Example predictions of SMART. The past trajectory and GT are visualized
in brown and black lines. Red, blue and green lines are predictions sampled with
different trajectory labels ci given as input. From left, multi-agent prediction
outputs from simulated dataset P-ArgoT, ArgoT, ArgoT and ArgoF datasets.
(a),(b) and (c) show simultaneous multi-agent multimodal outputs. (d) shows a
failure case where some of the predicted trajectories are aligned in opposite to
the direction of road. However, we argue that such traffic rules might be hard to
obtain with only top view map information.

Wasserstein diversity metric To quantify the diversity of the simulated
dataset, we introduce a novel diversity metric based on Wasserstein distances and
showcase our results on both real and simulated data. Firstly, we normalize the
trajectories such that it starts at the origin and ends at some x coordinate. We
use a trajectory with zero acceleration (ẍ = 0) and zero deviation from the x axis
(y = 0) as a reference trajectory for comparison. We define two metrics y (deviation
from x axis) and ẍ (deviation from zero acceleration) Wasserstein. A higher
Wasserstein metric indicates a higher deviation from the reference trajectory.
Tab. 3(right) shows the Wasserstein metric between real and simulated data for
two different datasets. Tracklets in KITTI [13] and Argoverse [7] generally move
in straight directions with very minimal turns indicating a very low diversity. In
contrast, our simulated trajectories are more diverse with agents executing turns
whenever possible, going hand in hand with the higher diversity in Tab. 3(right).

6 Conclusion

In this paper, we have addressed data diversity and model complexity issues in
multiple-agent trajectory prediction. We first introduced a new simulated dataset
that includes diverse yet realistic trajectories for multiple agents. Further, we
propose SMART, a method that simultaneously generates trajectories for all
agents with a single forward pass and provides multimodal, context-aware SOTA
predictions. Our experiments on both real and simulated dataset show superiority
of SMART over existing methods in terms of both accuracy and efficiency. In
addition, we demonstrate that our simulated dataset is diverse and general, thus,
is useful to train or test prediction models.
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