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Abstract

As cameras turn ubiquitous, balancing privacy and util-
ity becomes crucial. To achieve both, we enforce privacy
at the sensor level, as incident photons are converted into
an electrical signal and then digitized into image measure-
ments. We present sensor protocols and accompanying al-
gorithms that degrade facial information for thermal sen-
sors, where there is usually a clear distinction between hu-
mans and the scene. By manipulating the sensor processes
of gain, digitization, exposure time, and bias voltage, we are
able to provide privacy during the actual image formation
process and the original face data is never directly captured
or stored. We show privacy-preserving thermal imaging ap-
plications such as temperature segmentation, night vision,
gesture recognition and HDR imaging.

1. Introduction
Sensing and understanding humans and their movements

is an important goal of computer vision and computa-
tional imaging research. Long wave thermal vision sen-
sors (8−14µm) have a unique advantage over conventional
grayscale or color sensors since human detection is based
on both physical parameters (body temperature) and algo-
rithmic outcomes. While thermal sensors have had impact
in defense, surveillance and other areas, the high-cost and
large form factor has prevented wider adoption.

Recently, however, breakthroughs have been made in
miniature uncooled bolometer systems that allow low cost
and high quality thermal imagery. These have applications
in mobile devices [8], intelligent sensors for homes [31] and
other areas. We can now anticipate a future filled with mil-
lions, if not billions, of networked thermal cameras.

While the impact of such technology is exciting, there
will be significant societal pushback against widespread
adoption, since many objects that are opaque in the vis-
ible spectrum, such as clothes and walls, are transparent
in long wave thermal wavelength (for e.g., a recent U.S.
Supreme Court ruling [30] on imaging through walls). We

focus on the privacy of faces (instead of heart-rate [40], gait
[12] or other biometrics) since significant computer vision
research exists for recognizing faces in thermal imagery
[32, 2, 17, 33, 18].

We propose sensor policies and accompanying imag-
ing algorithms that retain the thermal camera advantages
for sensing humans while reducing the capabilities of face
recognition vision algorithms. Our sensors can be used in
situations where it is important to sense and track people
without compromising their privacy. A few examples of
these include monitoring employees in a factory, preventing
violent assaults in bathrooms, counting children in a play-
ground and detecting falls in assisted living environments.

To achieve these goals, we propose new hardware,
firmware and algorithms for thermal cameras, without re-
quiring any additional or new optics. Our algorithms
achieve privacy during image formation (i.e. during read-
out, amplification and digitization). This means that privacy
is enforced when the measurements of the signal are actu-
ally being made and there is never any direct image capture
of sensitive face information. We present three contribu-
tions for enforcing sensor-level privacy:

1. Digitization: We present a circuit design which cre-
ates silhouettes during image digitization by masking
measurements in the human temperature range. Face
recognition becomes impossible (i.e. zero recognition
rate) since the related voltages are never digitized. The
design can be implemented on a sensor ASIC and we
demonstrate results in simulation on real thermal data.

2. Sensor noise: We present policies for changing the
sensor noise characteristics while the image is being
created, by manipulating the microbolometer voltages
and gain amplification. We show how this noise neg-
atively affects face recognition. We demonstrate algo-
rithms to track people with this noisy data. This tech-
nique requires an additional calibration step to specify
the desired degree of facial deidentification.

3. Exposure bracketing: We present privacy preserving
thermal high-dynamic range (HDR) imaging. Our al-
gorithm removes a “no capture” region in the scene



radiance while maintaining HDR elsewhere. We show
theory for selecting the exposure brackets and demon-
strate both simulations and real implementations of
HDR thermal imaging. This method, like the digitiza-
tion approach, removes faces (by either overexposure
or underexposure of the corresponding pixels), result-
ing zero recognition rate.

1.1. Thermal signature model

Although human core temperature variation is within a
few degrees Celsius, facial skin temperature is more rele-
vant to preserving privacy. Our methods assume that hu-
man facial skin temperature lies in a known, narrow band
and that other objects of the scene are not in this band. Al-
though skin temperature can depend on a variety of physi-
ological factors [16], we use a model that depends on both
the normal internal body temperature (37◦C) and on known
ambient temperature, which is straightforward to measure
via, say, an on-board thermometer. We assume these two
opposing factors result in thermal equilibrium and induce a
constant facial skin temperature. Finally, the mapping be-
tween the known ambient temperature and this constant fa-
cial skin temperature is an input to our methods, and can be
obtained from the relevant studies in physiology [9].

1.2. Related Work

Low resolution thermal imagers: Low resolution ther-
mal imagers (such as those used in smart buildings [31])
have just enough light-field samples for their task, suggest-
ing that hardware under sampling may achieve both privacy
and utility. However, this approach indiscriminately sub-
samples all scene information, whereas we present tech-
niques, such as privacy during digitization and privacy pre-
serving thermal HDR, that remove facial information while
providing high resolution and HDR for the rest of the scene.

Thermal imaging for computer vision: Thermal com-
puter vision has demonstrated reliable people tracking [35],
health monitoring [40] and remote sensing [19]. A large
body of thermal face recognition exists [32, 2, 17, 33, 18],
and our goal is to capture thermal imagery while confusing
these types of algorithms, without losing the utility of ther-
mal imagery for other vision techniques. With the advent of
mobile thermal imagery such as the iPhone FLIR ONE [8]
system, maintaining usefulness and privacy will continue to
be an important goal.

ϵ-Photography: In computational photography, captur-
ing images while changing camera parameters by small
amounts [28] allows many light-field applications. We are
inspired by efficient photography, where sensor constraints
allow closed form solutions [13], and our goal is to deliver
privacy-enabled thermal imagery (defined by either over-
exposed or under-exposed pixels that correspond to human

Variable name Meaning
Φ Radiant power

GFID, GSK Bias voltages
λ Wavelength of incident light

λh,λl Limits of wavelength sensitivity
s(λ) Sensor spectral sensitivity
r(λ) Scene power density

t time
n Sensor noise
g Gain

Imax Pixel value for sensor saturation
Ĩmax(g) Gain dependent practical sensor saturation

Imin Minimum pixel value
Ĩmin(g) Gain dependent practical minimum pixel value
σread Sensor noise influenced by bias voltages
σADC ADC induced sensor noise
ei ith exposure value
f Thermal camera response function

Φmin,Φmax Max/min radiances for “no capture”
(Tmin, ..., Tmax) Integration times for an epsilon photograph
(Gmin, ..., Gmax) Gains for an epsilon photograph

βmin Lowest radiance for “no capture”
βmax Highest radiance for “no capture”

DRmax Maximum achievable dynamic range

Table 1. Summary of symbols used

data), while maintaining the integrity of the remaining por-
tions of the scene and a given time budget.

Privacy-preserving vision sensors: Most privacy pre-
serving vision algorithms apply k-anonymity, pixelation,
Gaussian blurring, face replacement or black-out [3, 34, 20,
1] after images of the scene are already captured. Our work
is about maintaining privacy during the process of convert-
ing photons into pixels. Recently, vision sensors have been
proposed that transform data at the sensor level itself by us-
ing embedded processing [23, 5, 38] or using custom sen-
sors for watermarking [25], cartooning [37] or pixel averag-
ing [7]. Other techniques use special optics attached to the
camera [27, 41]. Our approach differs in two ways. First, in
the thermal domain, we avoid depending on an embedded
vision algorithm (such as face detection) whose failure in
even a single frame may eliminate privacy. Instead we ex-
ploit reliable, temperature differences. Second, our use of
exposure, gain and bias voltages for privacy works with ex-
isting thermal cameras and, in this sense, provides another
security layer to the above complementary techniques.

2. Privacy during digitization
Our first technique for pixel-level sensor privacy is

through a component in an Application Specific Integrated
Circuit (ASIC) that filters those voltages corresponding
to human wavelengths. ASICs provide a low-power and
scalable option for very specific image processing require-
ments. Further, sensor-level ASICs can directly participate



Figure 1. Privacy during digitization: During the digitization
process, we can preserve privacy by masking out those sensor
measurements that fall in the human body temperature range. In
(I) we show a circuit diagram that does this, and in (II) we show
simulations of this circuit on real thermal data. Pixels correspond-
ing to the person’s skin are removed whereas the hot coffee mug
and the frozen water bottle are preserved. In (III) we show an ap-
plication of this approach for gesture recognition.

in the digitization process, without any storage or commu-
nication with other parts of the thermal imaging hardware.

In Fig. 1(I) we show a high level block diagram of a cir-
cuit to remove sensor measurements in the human temper-
ature range, while digitization occurs with an A-to-D con-
verter. This design is simple and (for a factory calibrated
thermal sensor) has no external parameters, other than the
ambient temperature discussed earlier.

Given an accurate sensor calibration, all pixel values as-
sociated with a given human spectrum thermal band can be
set to zero. Additional necessary circuit components, such
as the serial pixel organization streaming section and syn-

Figure 2. Digitization privacy in different scenes: Here we show
additional digitization results in scenes with people, computers
and buildings. The left column are the input 16 bit images and
the right column is the simulated output.

chronizing clock signals, have been left out. In Fig. 1(II)
we show software simulations of the circuit using data taken
with a real thermal sensor. The scene shows a person car-
rying a hot coffee mug and a frozen water bottle, and pix-
els corresponding to the human temperature range are re-
moved. Some pixels corresponding to the person’s clothing
were also removed, since these were warmed by body prox-
imity. Three additional results are shown in Fig. 2. The first
shows a person with a computer, which also generates heat,
and which is preserved by the technique. In the second and
third, groups of people are moving in a building environ-
ment. In all of these results, most face pixels are removed.

Gesture recognition: We demonstrate a gesture recog-
nition application of privacy during digitization in Fig.
1(III). We used a gesture database from [21] where data
taken under a light/dark background can be easily binarized
into silhouettes. This gives a training set of 10 hand gesture
classes and 20 examples of each gesture. The classifica-
tion was done using a multi-class bag-of-words SVM-based
classifier [6] that operates on keypoints (we used SURF fea-
tures). The test images were generated through simulation
of the circuit in Fig. 1(I) and we captured 20 test images for
the ten classes with a success rate of 97%.



3. Privacy with sensor noise
Noise added to grayscale and RGB images in software

is known to provide high levels of face anonymity at the
cost of reduction in image utility [34]. We will demon-
strate that, for thermal cameras, noise added through sen-
sor processes during image creation provides pre-capture
anonymity while still allowing useful applications.

Let us consider raw images from a thermal sensor that
give rise to independent and linear [32] pixel measurements.
From [13] and [36], we can model the linear response func-
tion for each pixels as generating the appropriate value of
radiant power, Φ as (from [36])

Φ =

∫ λh

λl

s(λ)r(λ)dλ (1)

where s(λ) is the sensor’s spectral response function and
r(λ) is the incident power density per unit time at wave-
length λ. The limits λl and λh are the wavelength limits
beyond which the spectral response of the sensor is zero.

As in [13], since Φ is expressed in electrons per second,
then Φt measured during an exposure of t seconds creates
the pixel measurement I expressed as digital numbers (DN)
[22]. This is written (from [13]) as,

I = min{Φt/g + n, Imax} (2)

where n is the sensor noise that is signal and gain dependent
and that we wish to exploit to create anonymity and that
is described in further detail below. Imax is the thermal
sensor’s level of total saturation.

The noise model above is a zero-mean random variable
with three modes that are considered to independent. Un-
saturated pixels are expressed as (from [13]),

Var(n) =

scene dependant︷ ︸︸ ︷
Φt/g2 +

scene independent︷ ︸︸ ︷
σ2
read/g

2 + σ2
ADC (3)

Sensor gain: An immediate implication of [13]’s noise
model shown in Eq. 3 is that reducing the gain g for a fixed
exposure time t increases noise. Although image degrada-
tion has been used in the context of privacy [34], we are the
first to point out the pre-capture advantage of adding gain-
related noise during amplification rather than later in soft-
ware. A disadvantage of using gain is that it results in scene
dependent noise. However, this can be compensated using
an appropriate exposure. Consider tmax, the most exposure
allowed for some particular task and time budget. In all fur-
ther discussions we set the gain to be g =

√
tmax which

is the lowest value it can be while allowing the exposure
to remove scene dependency. We now discuss the indirect
control of scene independent noise parameter σread in Eq.
3 using thermal bolometer bias voltages.

Figure 3. Typical pixel readout circuit for thermal cameras
(adapted from [24, 26, 15]) : Most thermal cameras remove back-
ground thermal noise with a “blind” bolometer that captures am-
bient thermal signals. The weight given to this background factor
depends on the ratio of two voltages, GFID and GSK . We exploit
these to add scene independent read noise during image formation.

3.1. Bias voltages

Thermal camera pixel readout circuits depend on a de-
signer’s particular requirements. However, the fundamen-
tal circuit topology usually follows Fig. 3 (adapted from
[24, 26, 15]). Here, GFID and GSK are gate voltages for
both the nMOS and the pMOS transistors [39], respectively
and are called bias voltages. Bias voltages are typically
pre-set to some optimal value by the camera manufacturer,
given the particular IC characteristics used in the circuit.

Bias voltages cause two effects; offsetting and dynamic
range scaling. The blind bolometer offsets ambient tem-
perature from the scene temperature read by the active
bolometer. Additionally, if the blind bolometer bias volt-
age changes, the dynamic range will proportionally vary as
well, because the compensation current to normalize the ac-
tive bolometer readings changes. In Fig. 4(I), face images
are taken for different exposures as the bias voltages GFID

and GSK vary from zero to their maximum value. Useful
thermal face images occur when the human signature falls
within the range and offset provided by the bias voltages.

The transistors for the read-out circuit in Fig. 3 oper-
ate between their cut-off and saturation levels. By deliber-
ately changing the bias voltages, the overall microbolome-
ter reading will be skewed towards either of these extremes,
given by the bit depth of the camera. This skew causes
the voltage output of the integrator stage to either be much
higher or lower than what the true value is from default bias
calibration. If the bias is sufficiently close to the fringe of
the thermal cameras resolution, parts of the image that are
outside the expected resolution range will be set to zero. In
other words, pushing the bias voltages outside the recom-
mended ranges will increase σread in Eq. 3.



Figure 4. Noise calibration for privacy: (I) shows the effect of bias voltages and (II) shows how to reverse engineer any thermal camera by
collecting images of a plane at constant temperature over different exposures across the bias voltage range. The highest standard deviation
of the image set (III) gives a histogram (IV) illustrating the ability of those bias voltages to remove data from images.

3.2. Calibration for privacy
The relationship between the bias voltages GSK and

GFID to the readout noise σread depends on the specific
sensor architecture. We reverse engineer the bias voltage
values required for obtaining pre-capture privacy by simply
varying the bias voltages over a range of voltages and expo-
sures, while the camera views a untextured lambertian plane
at a constant temperature.

Fig. 4(II) demonstrates this calibration using a 16 bit
Xenics Gobi 640 thermal camera with a 640 × 480 spatial
resolution and 0.005C thermal resolution. Such an image of
a simple scene should be smooth, without noise. By recov-
ering the standard deviations of the pixels, as in Fig. 4(III),
we can obtain a measure of how much the bias voltages set-
tings degrade the image, as visualized by the histogram of
the highest standard deviation image shown in Fig. 4(IV).
We only use the noise values that correspond to the bias
voltages that are able to image our target scene (i.e. hu-
mans) depicted by the black bounding lines in Fig. 4.

Evaluating privacy of bias voltage induced noise In
Fig. 5(I-IV) we show images created by setting the bias
voltages based on the calibration in Fig. 4 (GSK to zero and
GFID to 3.8V ). Comparing the Fourier spectrum of faces
taken under normal bias voltages with the spectrum of the
same faces taken with privacy preserving voltages shows
significant loss in information. In Fig. 5(V) we show the re-
sults of using a commercially available infrared face recog-
nition software [29] on a small database of five individuals.

Figure 5. Bias voltage noise provides face privacy: Normal bias
voltage values create clear thermal images as in (I), and the Fourier
spectrum of one of these images is shown. Setting GSK to zero
creates noisy images (II) whose Fourier spectrum shows signif-
icant degradation of information. In (III) we show the classifi-
cation rates of a commercially available IR recognition software
[29], which show the privacy preserving nature of sensor noise.

The individuals were imaged in the same room, at the same
distance from the camera and with approximately the same
pose. Both clear images and noisy images were obtained
and ten training images and ten test images were used for



Figure 6. Privacy-preserving thermal segmentation and people tracking with noise: In (I) we show images captured with sensor noise
and demonstrate segmentation and gesture recognition. In (II) we show a scene where a person carries a frozen water bottle and a boiling
hot cup of water. A thermal camera views the same scene, but we have adjusted the noise level to be such that the faces are obscured,
while still allowing segmentation of the background, person, boiling water and the frozen bottle. In (III)a we show an image of a night
scene taken with a color camera at high gain, showing the lack of visible information. A closeup of a face taken with noisy, private thermal
measurements is shown in (III)b. We demonstrate segmentation and tracking of a person at night in (III)c.

each person. In the figure, we see the average recognition
rates for the test images fall when sensor noise is added.

3.3. Privacy-preserving applications

In Fig. 6 we show three applications, that are discussed
below, using the previously calibrated sensor parameters.

Gesture recognition: We show gesture recognition in
Fig. 6(I) using the same training dataset [21] and classifier
[6] from the previous section. Here, however, segmentation
was done on real, noisy thermal data by closing contours on
a Sobel edge map. As a post-processing step, the segmen-
tation was cleaned by removing connected components and
applying diamond shaped erosion. We tested 20 images for
the ten classes and achieved a 97% recognition rate.

Temperature-based segmentation: In Fig. 6(II), we
show color images of a person carrying a frozen water bottle
and a hot cup of water. We capture the noisy, private image
and apply median filtering to obtain the images shown in
the second row. Despite the heavy noise induced by the bias
voltages, the large temperature differences allowed straight-
forward threshold-based image segmentation for the back-
ground, the person, the hot mug and the frozen bottle.

People tracking at night: In Fig. 6(III)a, we show a
color image of a night scene. Even with high gain, the im-
age has very little information. Thermal cameras can easily
image such scenes, and we demonstrate this with privacy,
as shown by the face closeup in Fig. 6(III)b. Four frames
from a video are shown in Fig. 6(III)c as the person moves
around the scene. We are able to segment a silhouette and

track the person at night by applying iterative guided image
filtering [14] to smooth the image and combining thresh-
olded masks from different iterations.

4. Privacy-preserving exposure bracketing
We now use exposure bracketing to either overexpose

or underexpose some target radiance range, without requir-
ing additional hardware and without degrading the remain-
ing pixels. Like the previous methods, this algorithm re-
moves sensitive information during image formation. Un-
like the previous methods, it requires multiple images, each
of which is also anonymized and which are combined in
software, after the images have been captured.

4.1. “No capture" radiance range
Recall the definition of radiant power in Eq. 1. Let us

consider the thermal case, with a broadband sensor with
sensitivity s(λ). The extreme thermal wavelengths are
λl = 7µm and λh = 14µm. The human thermal spec-
trum r(λ) behaves like an ideal black body with an absolute
temperature of 310.15 Kelvin. If we define ∆(λ) as a wave-
length dependent variance on the human thermal spectrum
r(λ), then this results in two variations of Eq. 1

Φmin =

∫ λh

λl

s(λ)

[
r(λ)− ∆(λ)

2

]
dλ (4)

and

Φmax =

∫ λh

λl

s(λ)

[
r(λ) +

∆(λ)

2

]
dλ. (5)



We depict these equations in Fig. 7(a). Fig. 7(b) illus-
trates our key idea, which is to create an HDR image of
the scene without any measurements in the range given by
[Φmin,Φmax], which we define as the “no capture” range.

A consequence of defining the “no-capture” range in
terms of image irradiance is that surfaces with a spectral
radiosity outside the spectral radiosity range r(λ) ± ∆(λ)

2 ,
may fall within the no-capture range [Φmin,Φmax], when
expressed in terms of Eq. 4 and Eq. 5, which results in
unintended black-out. In the visible spectrum, this makes
privacy preserving exposure bracketing difficult since many
surfaces will have a spectral radiosity that maps to the “no-
capture range” of human skin. This is less of a problem
in the thermal domain, as the radiosity to irradiance map-
ping effectively corresponds to a one-to-one map between
radiosity and temperature, i.e. it is unlikely that objects lie
within the human-temperature range.

4.2. Removing the “no capture” region
For single image capture, we can remove the “no cap-

ture” scene radiances by over or under exposure of the
appropriate range. Consider a pixel range (Imin, Imax),
where, from Eq. 2, sensor saturation occurs when gImax

electrons are collected.
Note that the pixel values just below Imax may also be

untrustworthy and may actually be degraded by noise [13].
As in [13], in practice we use Ĩmax(g) < Imax, which must
be measured for different values of sensor gain using a cal-
ibration step, and similarly for Ĩmin(g) > Imin. Complete
overexposure of the “no-capture” range occurs when the in-
tegration time t is such that,

t ≥ gĨmax(g)

Φmin
(6)

and complete underexposure occurs when the integration
time t is such that,

t ≤ gĨmin(g)

Φmax
, (7)

where g is gain, and Φmin and Φmax, expressed in terms
of electrons collected per second, are the lower and upper
boundaries of the no-capture range, respectively. We depict
these equations with dashed lines in Fig. 7(b), although in
reality the mapping will be piecewise constant.

4.3. Achievable dynamic range with variable gain
Consider an epsilon-photography experiment where a

stack of images S is collected under a finite-discrete
set of increasing exposure times and gain settings given
by {Tmin, ..., Tmax} and {Gmin, ..., Gmax} respectively.
Given S, not all “no capture” regions can be feasibly over
or under exposed. We define a minimum radiance, βmin,

and maximum radiance, βmax, for which over or under ex-
posure is possible, given this image stack.

We can pick the gain and the exposure for the radiance
limits for the no capture region βmin and βmax from Eq. 2,
Eq. 6 and Eq. 7, resulting in the following expressions,

βmin =
Gmin Ĩmax(Gmin)

Tmax
(8)

and

βmax =
Gmax Ĩmin(Gmax)

Tmin
. (9)

Finally, given the stack of images S, the no-capture range
[Φmin,Φmax] and radiance limits for the no capture re-
gion (βmin,βmax), the maximum dynamic range, DRmax

achievable with the “no capture” range removed is given by
one of three cases:

1. if Φmin ≥ βmin and Φmax ≤ βmax,
then DRmax = [0, (Gmax Ĩmin(Gmax))/Tmin].

2. if Φmin ≥ βmin and Φmax ≥ βmax,
then DRmax = [0,Φmin].

3. if Φmin ≤ βmin and Φmax ≤ βmax,
then DRmax = [Φmax, (Gmax Ĩmin(Gmax))/Tmin].

In the fourth case, no image in S can be anonymized, and
privacy preserving exposure bracketing is impossible.

4.4. Exposure bracketing
Exposure bracketing based ϵ-photography methods cre-

ate a single image from the stack S. This renders a single
effective sensor [11], whose camera response function can
be defined in terms of the original image stack. If there are
n exposures {T1, ..., Tn} from a camera with response f ,
then (from [11]),

h(Φ) =
n∑

i=1

f(TiΦ) (10)

In our analysis, f is governed by the pixel measurement
model in Eq. 2. Given a desired effective response func-
tion hdes, we can define an objective function based com-
paring the piecewise derivatives of the response function,
as demonstrated by [11]. Other definitions of the objective
function can also be used instead, such as maximizing the
HDR image’s SNR [13, 10]. Unlike [11], we remove any
computation of the objective function in the “no capture”
region, since we will later show how each exposure avoids
capturing data in this region. The objective function is

ξ(n,T) =

∫ Φmin

Γmin

|h′
des − h′|p ω dΦ+

∫ Γmax

Φmax

|h′
des − h′|p ω dΦ

(11)



Figure 7. Privacy-preserving exposure bracketing: In (a) we show our model of the human thermal signature based on a black body with
absolute temperature of 310.5. The radiances are mapped to pixel values in (b) using the camera exposure function (for clarity we avoid
illustrating these as piecewise constant). We specify the “no capture” region as a set of radiances that we do not wish to capture. If the
“no capture region” corresponds to human radiances, then we can use exposures so that the ground truth scene radiances in (c) are mapped
to images such as (d) and (e), where the human pixels are either over or under exposed. The optimal values for these exposures can be
obtained (f) to obtain a privacy preserving HDR thermal image, which has no information in the “no capture” region.

where Γmin and Γmax are the boundaries of the dynamic
range of g, p is a positive number indicating the norm and
Φmin and Φmax are the boundaries of the no-capture range.
The weighting function is designed as in [11],

ω =

{
0 h′

des(Φ) < h′(Φ)

1 otherwise,
(12)

and allows dense quantization but extracts a penalty for an
effective sensor that samples less densely than desired. We
constrain the minimization to positive exposures and such
that the no-capture range is blacked out for each exposure:

arg min
n,T

ξ(n,T) s.t.

1. Ti > 0

2. ∀ Ti

[
Ti ≥

Ĩmax

Φmin
⊕ Ti ≤

Ĩmin

Φmax

]
,

(13)

where ⊕ denotes logical OR, and Ĩmin and Ĩmax are the
maximum and minimum reliable pixel value of the sensor,
for exposure setting Ti. Constraint 1 enforces that the expo-
sures be positive. Constraint 2 enforces that the “no capture
range” be over or under exposed for each image.

We solve the above minimization through a simple ex-
haustive grid search over the parameters of exposures,
which assumes fixed values for the maximum number of
exposures and the step size for searching over the space of
scene radiant intensities. This approach is tractable when
there is a single “no capture” region, but becomes combi-
natorially expensive for multiple regions. We leave the cre-
ation of a general optimal algorithm for future work.

4.5. Exposure bracketing results

Simulated HDR results: In Fig. 7(c) we show a 16 bit
image captured with a Gobi 640 thermal camera that is used
to simulate scene radiance for the privacy-preserving HDR
algorithm. The image contains over 2400 distinct grayscale
values ranging from 0 to 9940, and the human temperature
range falls between Φmin = 4644 and Φmax = 5644. The
goal is to recreate this scene radiance with an image stack
of 8 bit simulated exposures. We assume gain is not a factor
(it is set to 1) and set the practical limits on pixel values to
be Ĩmax = 250 and Ĩmin = 5.

In Fig. 7(d-e) we show two exposures designed so that
the human temperature range is either over or under ex-



Figure 8. Outdoor privacy preserving HDR: Here we show additional simulated HDR results in the outdoors. The first column is the
original 16 bit data used as scene radiance input, while the second and third column are 8 bit images rendered from these where the face
information is either under or over exposed. The last columns corresponds to the HDR images created. The average pixel errors from top
to bottom are 0.12%, 0.0319% and 0.0522%.

posed, as discussed by Eq. 6 and Eq. 7. For a set of 112
exposures and for a fixed step size of 0.1 along the radi-
ant power axis, we perform a grid search optimization in
Fig. 7(f), whose optimal parameters are used to generate
the HDR image Fig. 7(g). The region of the original im-
age that corresponds to human skin and body is removed,
because this region is either over or under exposed in each
of the 112 input exposures. Comparing the non-zeroed out
pixels to the original image reveals a 0.12% average error.

In Fig. 8 we show results for testing the approach just
described on three outdoor scenes containing buildings and
vegetation. The first column shows the raw 16 bit images
used as input to the simulation, while the next two show ex-
amples of over and under exposure of that data to simulate
8 bit image captures. The final column shows the HDR re-
sults, and the average pixel errors from top to bottom are
0.12%, 0.0319% and 0.0522%.. In the first two rows, the
humans are still the only objects in the scene that generates
heat. Note that the face pixels are completely removed in
these results; in the second row, where the person is looking

through leaves, the individual leaves are preserved because
this is a per-pixel approach. In the third example, a parked
car with its engine running is imaged with a person. Since
the car heats non-uniformly, some parts of it are within the
human temperature band and are zeroed out. Although this
is a case where we do not produce a high-quality image,
privacy is maintained and most of the scene is captured.

Real HDR experiments trading off SNR/exposure: If
we adjust integration time for each gain and bias voltage
setting to keep image measurement Φt

g constant, lower gain
results in lower SNR [13]. Hence, once we have found the
optimal set of exposures, we can trade-off capture-time for
SNR or vice-versa.

Fig. 9 shows two sets of low SNR images taken at dif-
ferent exposures, 1 and 15. Privacy and fast capture are
obtained by fixing the gain at g = 1.5 and using different
bias voltages; Gsk = 0V,Gfid = 3.005V for over exposure
and Gsk = 2.915V,Gfid = 1.5V for under exposure. This
results in a fast capture of two images, without imaging any



Figure 9. Segmenting over a large dynamic range with two exposures: Here we show two real privacy-preserving HDR results. By
manipulating sensor parameters, we can quickly capture privacy-preserving over and underexposed images, which we fuse to generate a
privacy-preserving HDR image. The images in the first row show a person holding a coffee mug and frozen water bottle. The images in
the second row show a typical office scene: the background contains two monitors and a projector and the foreground contains a person
seated behind a laptop.

facial features. We then throw away over or underexposed
pixels in the respective over and underexposed images and
fuse them to generate privacy-preserving HDR images.

5. Summary

We are the first to show that sensor level manipulation
of thermal imagery offers an opportunity to create com-
putational photographs that have privacy and utility. We
have demonstrated simulations to show that a comparator
circuit can create silhouettes of humans in thermal images
during digitization of the image. We have shown real re-
sults for adding bias voltage noise to a thermal image, and
demonstrated useful applications despite this noise. Finally,
we have proposed a privacy preserving exposure bracketing
system that allows for capture of HDR images.

Our three approaches are complementary. For exam-
ple, the digitization and HDR techniques have low noise
and produce good image quality outside the face region,
when compared to the sensor noise approach that exploits
bias voltages. On the other hand, the digitization and sen-
sor noise approaches run in real-time. In contrast, the
HDR technique requires multiple images, and, without ad-
ditional processing, is only relevant for static scenes. Fi-
nally, the digitization technique requires additional hard-
ware and firmware upgrades to the camera, whereas the sen-
sor noise approach and the HDR technique can be used with
currently available thermal cameras that allow bias voltage
and exposure control, respectively.

5.1. Limitations
A structural limitation is that identification based on bio-

metrics such as silhouette and gait may be extracted from
images produced by our techniques. We have focused on
removing face information, due the disproportionate avail-
ability of technology and databases for faces, when com-
pared to other biometrics. Additional limitations include:

Background thermal signature: Our approaches as-
sumes that most scene objects do not lie in the human ther-
mal signature band. This assumption is generally reason-
able, since most objects in a scene do not generate their
own heat, unlike humans, and would therefore be close to
the ambient temperature. Also, many objects that generate
their own heat (fireplace, industrial machinery, etc.) are at
a higher temperature than humans. Even if some objects’
signatures do cross into that band, as in the last row of Fig.
8, scene understanding may still be possible.

Calibration: The digitization and HDR techniques re-
quire the same type of temperature-based calibration that
all uncooled cameras need [4]. The sensor noise step re-
quires an additional, application dependent step to specify
the extent of face deidentification that is required.

Reflections: Smooth surfaces reflect thermal radiation,
while scattering reduces the energy incident at the sensor.
Therefore reflections of faces may not be removed by the
digitization and HDR techniques.
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