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Abstract

The risk of unauthorized remote access of streaming
video from networked cameras underlines the need for
stronger privacy safeguards. Towards this end, we simulate
a lens-free coded aperture (CA) camera as an appearance
encoder, i.e., the first layer of privacy protection. Our goal
is human action recognition from coded aperture videos for
which the coded aperture mask is unknown and does not
require reconstruction. We insert a second layer of privacy
protection by using non-invertible motion features based on
phase correlation and log-polar transformation. Phase cor-
relation encodes translation while the log polar transforma-
tion encodes in-plane rotation and scaling. We show the key
property of the translation features being mask-invariant.
This property allows us to simplify the training of classi-
fiers by removing reliance on a specific mask design. Re-
sults based on a subset of the UCF and NTU datasets show
the feasibility of our system.

1. Introduction
Cameras as monitoring systems inside and outside the

home or business is an important area of growth. However,
as cameras that are connected online are prone to hacking,
with images and videos illegally acquired potentially result-
ing in loss of privacy and breach of security.

In our work, we propose a novel privacy-preserving ac-
tion recognition pipeline. This enhances the preservation
of privacy from capture to executing visual tasks, as shown
in Figure 1. By using a lensless coded aperture (CA) cam-
era, which places only a coded mask in front of an image
sensor, the resulting CA image would be visually unrecog-
nizable and are difficult to restore with high fidelity. Decod-
ing the image as a preprocessing step is an ill-posed inverse
problem and requires expensive computation if the mask is
non-separable. Instead, we extract motion features (transla-

Figure 1: Comparison of imaging pipelines. Conventional
vision systems (top row) may be vulnerable to loss of pri-
vacy due to hacking. Our simulated lensless coded aperture
camera system (bottom row) has the benefit of preserving
privacy while being able to classify human actions.

tion, rotation, and scaling) using the Fourier-Mellin trans-
form and use them as inputs to a deep neural network. We
show that the translation features are invariant to the mask
design, as long as its Fourier transform is broadband (i.e., no
zeros in the spectral magnitude). Specifically, the term “in-
variance” refers to the fact that the same translational fea-
tures can be reproduced as long as the motion in the scene
is identical. The translational features do not change over
different mask patterns.

From a privacy point of view, the CA serves as the first
layer of privacy protection, as CA images are visually in-
comprehensible. Our motion characterization serves as a
second layer of privacy protection. The motion features are
based on phase correlation between pairs of video frames,
which whitens signal in Fourier space and only leaves mo-
tion signal.

The invariance property allows training to be done with-
out regard to a specific mask design. Therefore, we design
a training mechanism which arbitrarily changes masks for
each sample batch. This training mechanism, along with the
mask-invariant property, has practical meaning, as it makes
commercial production of privacy preserving CA cameras
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viable with random masks. In future, a camera manufac-
turer does not have to store the mask and share it with the
third party who wants to develop recognition algorithms.
Training data from one camera could be used to develop ma-
chine learning models that can be deployed on other cam-
eras (with other masks).

2. Related work
Our work spans the areas of privacy-preserving vision

systems, coded aperture imaging, motion feature extraction
and action recognition. We briefly review representative ap-
proaches in these related fields.

2.1. Privacy-preserving approaches

Optics and imaging sensors. The rapid development of
optics and sensors has brought emerging opportunities for
privacy preservation. There are imaging sensors and/or
modalities whose direct output is not visually recognizable.
This matches the purpose of privacy preservation at op-
tics/sensor level. An easy approach for preserving privacy is
by defocusing [29]. Alternative optical solution is to put op-
tical elements in front of sensors, e.g., cylindrical lens [27],
diffraction gratings [36], or diffusers [2] in front of the sen-
sor. Recovery of these images requires careful calibration
of the imaging system and adequate computation.

Previous privacy preserving action recognition ap-
proaches include multiple extremely low resolution sen-
sors [9], or compressive sensing (CS) [23]. More specifi-
cally, CS approaches require sequential multiple frame cap-
ture and a DMD array (which is costly and has fragile mov-
ing parts). Our approach only require one camera.

Firmware. There are also systems where the sensor
firmware is modified to protect privacy before or dur-
ing the sensing process. One approach is to embed pri-
vacy preserving schemes into the DSP architecture in cam-
eras [8, 28, 42]. For example, in PrivacyCam [8], regions
of interest are first identified based on background subtrac-
tion before being encrypted using AES. Other implemen-
tations involve embedding watermarks into the captured
data [10, 22].

Vision algorithms. Software-based approaches for privacy
preservation typically involve degrading or concealing in-
formation in images/videos. They include Gaussian blur-
ring [6], face swapping [5], and scrambling [14]. Higher-
level approaches use integrated classifiers [38] and/or rec-
ognizers [19] to allow sensitive information to be modified
during capture and prior to sharing [43]. A recent tech-
nique improves privacy in the camera feed using an adver-
sarial perturbation mechanism [31]. The adversarial learn-
ing mechanism has also been used for learning the optimal
encoding schemes for different tasks [30].

2.2. Coded aperture imaging and photography

Coded aperture imaging was originally studied to fulfill
the lack of imaging elements, namely, lenses and mirrors,
in the field of astronomical X-ray and gamma-ray imaging
in the 1960s [7, 12, 16]. Thereafter, the idea of extend-
ing pinhole cameras to cameras with masks consisting of
designed patterns has been used for eliminating issues im-
posed by lenses and has found novel applications in extend-
ing depth-of-field [11, 13], extracting scene depth and light
fields [25, 26, 40], and miniaturizing camera architectures
[1, 4].

The blur effect caused by coded aperture can be used for
privacy preserving applications. Li et al. has proposed co-
prime blurred pairs (CBP) for on/post capture video surveil-
lance. A pair of coprime kernels can be used to blur im-
ages/videos. The original image/video can be recovered
using the coprime kernels. CBP kernels are polynomial.
This imposes higher numerical precision for the captured
images. Compared to CBP, we focus our design on binary
masks with significantly larger kernel sizes. Our goal is to
perform action recognition without any form of restoration.

2.3. Motion features and action recognition

Finding motion features/descriptors from videos is a
well-studied task in computer vision. Global motion can be
used for camera calibration, image registration and video
compression. The key idea is to find image-wise/block-
wise matching between video frames via correlation [32]
or image gradient [21]. Local motion features enable higher
level vision tasks such as action recognition, anomaly detec-
tion, and video understanding. Early approaches include us-
ing handcrafted motion features, e.g., HOG/HOF [24] and
dense trajectories [41]. Recent advances have utilized two-
stream inputs (RGB + optical flow) [34] and 3D CNN [39]
to learn spatio-temporal features [15].

State-of-the-art techniques for action recognition require
both appearance video frames and optical flow features, as
well as training on large-scale datasets, e.g., ImageNet and
Kinetics. In our case, we explore the use of global motion
features in the context of privacy preservation. In addition
to serving as distinct signatures of basic actions, we show
that they can be invariant to the coded aperture mask design.

3. Our algorithm

In this section, we describe how we compute features
for action recognition without having to restore the images
from a (simulated) lenless coded aperture camera. We call
these features TRS (translation, rotation, scale) features.
We first describe the image formation process.
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3.1. Image formation

We consider a lens-free coded aperture imaging archi-
tecture, where a planar mask is placed in front of an imag-
ing sensor. The encoding mask can be considered as an
array of pinholes located at various lateral locations. The
acquired image d can be numerically modeled as a con-
volution between the object image o and the point spread
function (PSF) a, i.e.,

d = o∗a + e, (1)

with e being noise. The convolution is applicable if the
mask is far away enough from the sensor, such that each
sensor pixel is able to see the entire mask pattern. If
the mask-sensor distance is small (as in the case of Flat-
Cam [4]), the mask design should consist of a smaller pat-
tern replicated in a 2D array. The size of the smaller pattern
should be such that each sensor pixel sees a version of it
locally. This allows the output to be a result of convolution
as well.

To restore the image, we convolve d with a decoding
array g that satisfy the condition g∗a = I. This re-
sults in an estimate of the original image: ô = g∗d =
g∗(o∗a + e) = (g∗a)∗o + g∗ e ≈ o.

3.2. Translation based on phase correlation

Phase correlation was used first for global image reg-
istration [32] and then for motion/flow estimation [3, 18].
Compared to other motion estimation methods [37], phase
correlation has the advantages of being computational ef-
ficient and invariant to illumination changes and moving
shadows. We show how phase correlation can be used to
characterize motion in coded aperture observations without
knowing the mask design.

Assume there exists a translation between two video
frames:

o1(p) = o2(p + ∆p), (2)

where p = [x, y]T and ∆p = [∆x,∆y]T are the spatial
coordinates and displacement, respectively.

In frequency domain, translation gives rise to a phase
shift:

O1(ν) = φ(∆p)O2(ν), (3)

where ν = [ξ, η]T and φ(∆p) = expi2π(ξ∆x+η∆y). ξ and η
are the frequency coordinates in Fourier space. By comput-
ing the cross-power spectrum and taking an inverse Fourier
transform, the translation yields a delta signal:

Co(ξ, η) =
O∗

1 · O2

|O∗
1 · O2|

= φ∗
O∗

2 · O2

|O∗
2 · O2|

= φ(−∆p), (4)

c(p) = δ(p + ∆p). (5)

The translation can be located by finding the peak signal;
this feature is the basis of the original work [32], assuming

a single global translation. Multiple translations result in an
ensemble of delta functions. Note that these two equations
are critical to our technique, as they show that computing
translation is independent of the coded aperture design, as
long as they have a broadband spectrum. Instead of finding
the peak signal, we make full use of the computed image,
treating it as a translation map (T-map).

3.3. Mask invariant property of T features

The convolutional transformation that generates a CA
image encodes local motion in the original video to global
motion in the resulting CA video. This makes the local-
ization of the motion very challenging without restoration.
However, we demonstrate that the global motions, such as
translation, rotation, and scaling can still be retrieved using
phase correlation. Following Eqs. (1) and (3), a translation
relationship (∆p) also exists:

D1(ν) = O1 · A = φO2(ν) · A = φD2(ν), (6)

where A denotes the Fourier spectrum of mask a. The
cross-power spectrum is then

Cd(ν) =
D∗

1 · D2

|D∗
1 · D2|

= φ∗
O∗

2 · A∗ · A · O2

|O∗
2 · A∗ · A · O2|

' Co. (7)

Note that phase correlation has a magnitude normaliza-
tion procedure while computing the cross-power spectrum.
This step can effectively whiten the spectrum so as to elim-
inate global changes in appearance. This property provides
an additional layer of privacy protection. In our imple-
mentation, we add a small number ε in the denominator of
Eq. (7) to prevent division by zero. Regardless, the object
spectrum will be unstable if A has near-zero elements.

We avoid the instability problem by randomizing the
mask patterns, which substantially reduces the chance of
zero values for A. Examples are presented in Figure 2.
With ε = 10−3, a pseudorandom mask (column 2 of Fig-
ure 2) shows near-identical T features compared to the T
map computed from appearance frames directly. In Fig-
ure 2, the randomness decreased from mask 1 to mask 3.
Mask 3 has the least amount of randomness and worst T
feature degradation.

3.4. Mask design

We focus on 2D intensity binary mask patterns as they
are more practical for implementation. As shown in Fig-
ure 2, the randomness in the mask pattern, which result in
broadband spectra, preserves the T features compared to the
T map computed from RGB frames. Figure 3 show rep-
resentative masks that are considered. The pseudorandom
mask (mask 1) provides a relatively uniform magnitude dis-
tribution. The separable mask (mask 2) based on maximum
length sequence (MLS) have much stronger frequency re-
sponse along the horizontal and vertical axes. Mask 3 is just
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Figure 2: T features from different CA observations. Row
1: 3 different mask patterns (all 50% clear). Mask 1 is pixel-
wise pseudorandom; mask 2 is a 2D separable Maximum
Length Sequence (MLS). Rows 2 and 3: example RGB im-
ages and their corresponding synthetic CA frames. Row 4:
T feature maps for the image pairs above them. Row 5: er-
ror maps, with the “ground truth” being the T map for RGB
frames.

a round aperture, and it has undesirable dropoff at higher
frequencies. We use pseudorandom masks for our experi-
ments.

Note that since these masks are spatially as large as
the image and non-separable in x and y (except row
1), high fidelity image restoration would be difficult and
computationally-expensive [11]. We did not implement a
restoration algorithm for these reasons.

We will show later that using only T features is less ef-
fective for action recognition (Figure 6). We investigate two
extensions of the T features.

3.5. Extension 1: Translation-rotation-scale (TRS).

Given global translation, rotation, and scaling, we have
o1(p) = o2(sRp+ ∆p), where s is a scaling factor and R
is a rotation matrix with angle ∆θ. Translation ∆p can be
eliminated by taking the magnitude of the Fourier spectrum,

Figure 3: Two pseudorandom mask patterns and a round
aperture (all 50% clear) and their Fourier spectra. This
shows why pseudorandom patterns are desirable, since they
retain high-frequencies.

i.e.,
|O1(ν)| = |O2(sRν)|. (8)

If we treat the Fourier spectra as images and transform
them into log-polar representations, i.e., p = [x, y]T ⇒
q = [log(ρ), θ]T , rotation and scaling become additive
shifts on the two axes, i.e.,

|O1(q)| = |O2(q + ∆q)|. (9)

This enables us to use phase correlation once again to locate
rotation and scale. Qualitative examples are presented in
Fig. 4.

3.6. Extension 2: Multi-stride TRS (MS-TRS).

We make a further extension to compute TRS features
based on multiple strides in each video clip. This is to ac-
count for varying speeds of motion. For a video clip with
length l, the TRS features in stride s are computed by:

T
(s)
i , RS

(s)
i = T RS{di×s,di×s+s}, (10)

where i ∈ {0, 1, ..., b l−ss c+1} denotes all the possible con-
secutive indices within length l. For example, if a video clip
of length 13 is given, the resulting s2 TRS features have 12
channels, 6 for T, and 6 for RS. In our case, we compare
evaluation results for strides of 2, 3, 4, 6, with clip lengths
of 13 and 19.
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Figure 4: TRS feature comparison of synthetic motion
cases. Row 1: pure translation, (0, 20) pixels. Row 2: pure
rotation of 14◦, 10 pixels in RS y-axis. Row 3: pure scaling
of 1.24×, 10 pixels in RS x-axis. Row 4: multiple transla-
tions. Highlighted are local peak values. Row 5: a combi-
nation of translation, rotation and scaling. Labeled are peak
values. For the last two rows, zoom-in versions of the TRS
maps are displayed.

4. Experimental results
In this section, we report results for the following exper-

iments:

• Comparison with baselines: We compare the classifi-
cation performance using regular and CA videos.

• Performance evaluation of our proposed T, TRS, and
MS-TRS features;

• Comparison of effects using the same versus different
or varying masks on training and validation;

• Comparison of using different MS-TRS configura-
tions; this experiment is used to select an appropriate
configuration for final testing.

• Testing of trained selected MS-TRS configuration.

We first describe the datasets and protocols used.

Datasets. We have evaluated our approach on the UCF-
101 [35] and NTU [33] datasets. UCF-101 [35] contains

Figure 5: Visualization of proposed privacy-preserving fea-
tures. T: translation only. TRS: translation, rotation, and
scale. MS-TRS: translation, rotation, and scale under mul-
tiple strides.

101 action classes with 13k videos. In our initial evaluation,
we focus on indoor settings (more important from a privacy
standpoint). Therefore, we created four different subsets
from the 101 classes by selecting actions relevant to indoors
(see Table 1). We also use the NTU [33] dataset which con-
tains videos of indoor actions. We choose this dataset as it
collects data using stationary cameras (we handle only static
background for now). From our initial evaluation, we found
that our proposed approach is better suited for more signif-
icant body motions. Because of this, we choose ten classes
(with a mix of whole and partial body motions) for our final
testing. Eight classes come from the NTU dataset and two
classes are from the UCF dataset.

4.1. Protocol

Definitions. We use letters s and l to denote the stride and
length of a video. For example, s1, l4 denotes four consec-
utive video frames. The number of input channels depends
on the training mode.

Training and Validation. We use the first official train/test
split from the UCF dataset and randomly select 20% of the
training set for validation. Both the training and validation
data is expanded using data augmentation to prevent over-
fitting. The data augmentation process is as follows.

• gray clips: Each video frame is loaded in as grayscale
image at a resolution between 224 and 256. The aspect
ratio is fixed at (240× 320). The clip is then vertically
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name actions
UCF (5) Writing on board, Wall pushups,

blowing candles, pushups, mopping
floor

UCF-body (09) Hula hoop, mopping floor, baby
crawling, body weight squat, jumping
jack, wall push up, punch, push ups and
lunges.

UCF-subtle (13) Apply eye makeup, apply lipsticks,
blow dry hair, blowing candles,
brushing teeth, cutting in kitchen,
mixing batter, typing, writing on board,
hair cut, head assage, shaving beard,
knitting.

UCF-indoor (22) UCF-body and UCF-subtle

Table 1: Four different subsets of UCF-101[35] used in our
evaluation. The number of classes is shown in brackets.
Each class has about 10K video frames.

flipped with 50% chance. A (224×224×l) clip is then
cropped and used as input.

• CA clips: Each CA clip first experiences the same aug-
mentation step as gray clips. The CA simulation is
computed at the resolution of 256 × 256 and rescaled
back to 224 × 224. We simulate CA observations
by computing element-wise multiplication in Fourier
space between the Fourier transforms of the image and
the mask kernel. We did not implement boundary ef-
fect for computation consideration. The diffraction ef-
fect is not accounted for as we observe minimal impact
on the TRS features. Another reason is that simulating
PSF for non-separable masks by matrix multiplication
[11] is expensive.

• T features: The T features are generated from CA clips
at the resolution of 256× 256. The central 224× 224
area is cropped as input. An l-frame CA clip results in
(l − 1) T channels.

• TRS/MS-TRS features: In the TRS setting, the T fea-
tures follow the same cropping. For RS, the R-axis
uses center cropping while the S-axis is downsized to
224. An l-frame CA clip results in 2l channels, with l T
channels and l RS channels stacked together. For MS-
TRS, the resulting channels depend on the selected
strides.

We use a batch size of 16 or 32. Each epoch, for both
training and validation, prepares samples randomly from
approximately 20% of all the possible frame combinations.
50 Epochs are used in our evaluation experiments. The per-
centage of accurate samples is reported. When reporting,

we compute the running average accuracy of 5 epochs for
better visualization.

Testing. During testing, we resampled each video at 3 spa-
tial scales (µ × µ pixels, with µ = 224, 256, 300) and 5
temporal starting frames evenly distributed across the video
length. For example, using MS-TRS-s346-l19 configura-
tion, a video with 100 frames will be used to generate five
clips, starting at frames 1, 21, 41, 61, and 81, with each clip
being 19 frames long. Each clip will be used to compute
MS-TRS at three spatial scales. The final score for each
video is computed by averaging the scores of the 15 clips.

Others. We use the VGG-16 CNN architecture, which con-
tains approximately 134 million parameters. Adam opti-
mizer is used with learning rate 0.0001, β1 = 0.9, β2 =
0.999. Since the CA observation is computed on-the-fly, we
can change the underlying masks used in each batch. In this
paper, we use “m1/m1” to refer to the setting where train-
ing and validation using the same fixed mask and “m1/m2”
to refer to when training and validation uses two different
masks. Finally, “dm1/dm2” denotes the setting where train-
ing and validation is done using variable masks. A pseudo-
random binary mask is randomly generated for each batch.
Note that the mask is fixed for all frames of a single video.

4.2. Initial evaluation

Baselines. Before training with our proposed privacy-
preserving features (T, TRS, MS-TRS) as input, we first
train one network on the original videos and three networks
on the simulated CA videos as our four baselines. See the
results in Table 2. The top-1 classification accuracy of 95%
(row 1) for the original videos is our upper bound of what
we can expect. After all, we do not expect our privacy pre-
serving representation to add information. On the other
hand, the performance of the baselines trained directly on
CA videos (rows 2 to 4), will serve as our lower bounds. We
expect our proposed features, which involve computation
based on CA, to perform better than CA. The CA baselines
show instability even when training and validation phases
have the same mask. The network corresponding to the sec-
ond row suffers from overfitting. Changing training masks
for each batch does not improve the performance. These
results show that it is difficult to train a network that can
directly classify CA videos.

Variable masks during training. Our goal is to maximize
the robustness of the designed features to the mask pat-
terns. In order to achieve this, we change the training and
validation masks by randomly generating a pseudo-random
mask during each batch. We compare this dynamic training
mechanism with two other modalities, i.e., (1) training and
validation using the same mask (m1/m1) and (2) training
and validation using two different masks, no mask varia-
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training validation
gray video 99.56 (99.86) 94.39 (95.91)

CA (m1/m1) 79.06 (92.65) 63.21 (86.96)
CA (m1/m2) 94.66 (95.17) 27.95 (40.55)

CA (dm1/dm2) 34.93 (36.61) 27.23 (36.96)

Table 2: Baseline comparison for UCF-05. Here, for the
CA cases, training and validation are done directly on CA
videos. The numbers are: average accuracy % of the last 5
epochs (maximum accuracy %). All clips have length 3.

tion during training (m1/m2). The results are presented in
Figure 6.

For T features, the validation accuracy plateaus at about
60%. Even without training on dynamic masks, both vali-
dation accuracy (m1/m1 and m1/m2) gradually increase in
a similar fashion. Dynamic training with variable masks
does not improve the accuracy. This supports the fact that T
features are invariant to the choice of masks.

For TRS features, using the same stride and length of the
clips, the performance improves to around 70% for m1/m1.
However, since the RS features are not mask-invariant, val-
idation using a different mask does not have the same accu-
racy. Fortunately, by varying the masks during training, the
performance stays the same as m1/m1. This is an interest-
ing effect as, theoretically, the RS features do not have the
same mask-invariant property. This drawback appears to be
mitigated by changing the masks during training. This, in
turn, enables us to test using an arbitrary mask.

For MS-TRS features, we observe a strong oscillation
for the m1/m1 and a large gap between m1/m1 and m1/m2.
The oscillation indicates the unstable progress for MS-TRS
with the same training mask. The gap between m1/m1 and
m1/m2 is very likely caused by the RS features, because RS
is not mask-invariant. The use of dm1/dm2 overcomes these
two drawbacks and achieves 77.8% validation accuracy.

Strides and clip length. In the case of TRS, we found that
increasing the strides and clip lengths can improve the per-
formance. The results are summarized in Table 3. In this
case, the same mask was used during training and valida-
tion (m1/m1).

We evaluated different combinations of MS-TRS fea-
tures. The training and validation for MS-TRS is un-
der dm1/dm2 mode. The results are summarized in Ta-
ble 4. For the same video length, using larger strides im-
proves validation accuracy. For the same stride setting,
e.g., s346, processing more video frames improves perfor-
mance. However, using longer stride and longer video, such
as i.e. s46, l19, suffers from overfitting. The combination
s2346, l19 is not evaluated as generating the 44-channel in-
put on-the-fly becomes computationally expensive.

training validation

ch6
s1 97.23 82.33
s2 97.44 82.49
s4 98.66 85.16

s2
ch4 97.76 81.78
ch6 97.44 82.49
ch10 98.87 85.56

Table 3: Comparing performance of different strides and
lengths of video, for TRS, m1/m1 on the UCF-05 dataset.
The numbers are maximum accuracy percentages within the
first 50 epochs. ch denotes the number of input channels.

input shape training validation
s2346, l13 (224, 224, 30) 96.67 83.59
s346, l13 (224, 224, 18) 93.69 83.66
s46, l13 (224, 224, 10) 92.94 86.59
s346, l19 (224, 224, 26) 96.00 86.26
s46, l19 (224, 224, 14) 89.91 79.23

Table 4: Comparison of training and validation perfor-
mances for MS-TRS, dm1/dm2 for UCF-05. Numbers are
max accuracy percentage within the first 50 epochs.

UCF-body UCF-subtle UCF-indoor
s346, l13 88.4 / 81.2 84.9 / 73.2 84.8 / 70.8
s346, l19 90.5 / 83.4 86.1 / 76.4 88.6 / 72.8
s46, l13 89.9 / 79.1 80.9 / 66.5 83.8 / 66.3

Table 5: Training and validation accuracies on different
UCF subsets for networks trained on different MS-TRS
configurations. UCF-body, UCF-subtle and UCF-indoor
has 9, 13 and 22 classes respectively.

More action classes. We selected three MS-TRS settings
from Table 4 and then trained networks for three larger
datasets. These datasets are also subsets of UCF-101 ac-
tions focused on indoor settings and include body motions
and subtle motions which primarily involve hand & face.
The evaluation results are shown in Table 5.

4.3. Testing results

Based on the experiments on the UCF subset datasets, we
selected i.e., MS-TRS-s346-l19 as the best feature repre-
sentation. Next, we computed MS-TRS-s346-l19 features
on the 10-class combined dataset of NTU and UCF to ex-
amine the feasibility of our representation for daily activ-
ities. We used about one-sixth of the NTU videos for the
eight classes for training to ensure we have a similar number
of training examples as for the two UCF classes. In train-
ing phase, each class consists of 100 videos with more than
10K frames. We use a different data augmentation scheme
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Figure 6: Comparison of validation accuracy for UCF-05, with training and validation: using the same mask (m1/m1), using
two different masks (m1/m2), and based on a random mask per batch and a different random mask for validation (dm1/dm2).
Note: s3 = stride of 3, s2346 = strides of 2, 3, 4, and 6.

ranking class top-1 top-2 top-3
1 hopping 97.1 100 100
2 staggering 94.3 97.1 100
3 jumping up 91.4 97.1 97.1
4 jumping jack † 81.1 91.9 100
5 body weight squats † 76.7 86.7 93.3
6 standing up 57.1 88.6 94.3
7 sitting down 51.4 82.9 100
8 throw 31.4 57.1 68.6
9 clapping 11.4 14.3 31.4
10 hand waving 5.70 14.3 20.0

average 60.1 73.4 80.8

Table 6: Testing results for combined NTU and UCF 10
classes dataset. † indicates the class comes from UCF
dataset, others are from NTU dataset. Ranking according
to top-1 accuracy. The numbers are in percentages.

for the NTU dataset. Each NTU video is loaded at random
height resolution between 460 and 520. The aspect ratio is
fixed at 1080 : 1920 = 9 : 16.

The central 240× 320 region (same as the UCF classes)
is cropped and used to compute CA and MS-TRS. For test-
ing, each NTU video is loaded at 522×928 resolution. The
central 256×256 video is cropped and used to compute CA
and MS-TRS at different scales as described in the testing
protocol. The overall top-1 accuracy is 60.1%. The top-1,
2, 3 accuracies for each class is reported in Table 6. The
results indicate a large variation across classes. Our trained
model is able to correctly recognize body motions such as
hopping and staggering but is less accurate at differentiat-
ing between subtle hand motions such as clapping and hand
waving. For further analysis, we show the confusion matrix
in Figure 7. Interestingly, 58% of the misclassified samples
are classified as “staggering”.

Figure 7: Confusion matrix for the NTU-UCF-10 classes.
The numbers are in percentages. Our technique works very
well for large motion, but degrades as the motion become
increasingly more subtle.

5. Discussion

Restoration of coded aperture images. Restoration from
CA images is possible but a non-trivial task. Deconvolu-
tion can be done if the mask design is known (including
PSF or mask code, pixel pitch, distance between the SLM
and the sensor). Approaches used include those of [4, 11]
though their masks are separable in x and y whereas ours
are not. Even when the mask and camera parameters are
known, restoring our CA images can be expected to be sub-
stantially more computational expensive.

Our pseudorandom masks have approximately a delta
function as their autocorrelation. Interestingly, this property
enables object appearance recovery based on correlation-
based methods. The autocorrelation of a CA image is equiv-
alent to the autocorrelation of the scene image: d ? d '
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(o∗a) ? (o∗a) = (o ? o)∗(a ? a) ∝ o ? o. The object
signal can, in principle, be recovered from its autocorrela-
tion using a phase retrieval algorithm [17, 20]. However,
such methods can only restore a coarse image (specifically,
near binary quality at high contrast areas). More accurate
image restoration is an interesting problem but is outside
the scope of this paper.

Boundary effects in real CA images. Real CA images are
expected to deviate from our simulated results. The most
significant factor is the boundary effect. In our case, we
simulate the CA observations by convolving the images and
PSFs using FFT so as to achieve efficiency in training and
validation. However, FFT-based convolution assume the
signal is periodic, which is not the case for real cameras. A
potential direction to ameliorate this problem is to zero-pad
both image and mask, doubling both resolutions, apply FFT,
element-wise multiply, and then crop to the original size af-
ter performing inverse FFT. This would generate simulated
CA frames that are more consistent with ones captured with
a real camera, but at a much higher computational cost.

6. Conclusions

There are several interesting takeaways from our exper-
iments. First, training directly on the CA videos results
in poor performance. Second, varying the mask at ran-
dom during training reduces overfitting and improves per-
formance. Third, using multiple strides with TRS (MS-
TRS) as input works the best. This is likely attributed to
its ability to adapt to different speeds of motion. Finally,
results (for a subset of NTU and UCF mixed datasets) show
that our technique works very well for large motion, but de-
grades as the motion become increasingly more subtle.

Additionally, the invariance property, theoretically, ap-
plies to both RGB videos and CA videos. As a result, in
principle, this property should support transfer learning by
first learning features from rich public RGB videos, with
fine-tuning weights using actual CA videos. It would be
interesting to investigate other visual tasks such as optical
flow and anomaly detection. Other future directions in-
clude prototyping an actual CA camera system and collect-
ing large-scale well-annotated CA datasets.
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