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Pre–Capture Privacy for Small Vision Sensors
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Abstract—The next wave of micro and nano devices will create a world with trillions of small networked cameras. This will lead to
increased concerns about privacy and security. Most privacy preserving algorithms for computer vision are applied after image/video
data has been captured. We propose to use privacy preserving optics that filter or block sensitive information directly from the incident
light-field before sensor measurements are made, adding a new layer of privacy. In addition to balancing the privacy and utility of the
captured data, we address trade-offs unique to miniature vision sensors, such as achieving high-quality field-of-view and resolution
within the constraints of mass and volume. Our privacy preserving optics enable applications such as depth sensing, full-body motion
tracking, people counting, blob detection and privacy preserving face recognition. While we demonstrate applications on macro-scale
devices (smartphones, webcams, etc.) our theory has impact for smaller devices.

Index Terms—Computer Vision, Privacy.
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1 INTRODUCTION

Our world is bursting with ubiquitous, networked sensors.
Even so, a new wave of sensing that dwarfs current sensor
networks is on the horizon. These are miniature platforms, with
feature sizes less than 1mm, that will appear in micro air ve-
hicle swarms, intelligent environments, body and geographical
area networks. Equipping these platforms with computer vision
capabilities could impact security, search and rescue, agriculture,
environmental monitoring, exploration, health, energy, and more.

Yet, achieving computer vision at extremely small scales still
faces two challenges. First, the power and mass constraints are
so severe that full-resolution imaging, along with post-capture
processing with convolutions, matrix inversions, and the like,
are simply too restrictive. Second, the privacy implications of
releasing trillions of networked, tiny cameras into the world would
mean that there would likely be significant societal pushback and
legal restrictions.

In this paper, we propose a new framework to achieve both
power efficiency and privacy preservation for vision on small
devices. We build novel fixed and programmable optical designs
that filter incident illumination from the scene, before image
capture. This allows us to attenuate sensitive information while
capturing exactly the portion of the signal that is relevant to a
particular vision task. In this sense, we seek to generalize the
idea of privacy preserving optics beyond specialized efforts. We
demonstrate privacy preserving optics that enable accurate depth
sensing, full-body motion tracking, multiple people tracking, blob
detection and face recognition.

Our optical designs filter light before image capture and
represent a new axis of privacy vision research that complements
existing “post image capture” based approaches to privacy preser-
vation. Like these other approaches, we seek to balance the utility
and privacy of the data. For miniature sensors, we must also
balance the performance and privacy guarantees of the system
with sensor characteristics such as mass/volume, field-of-view and
resolution. In this paper, we show applications on macro-scale
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devices (smartphones, webcams, etc.), but our theory has impact
for smaller devices.

Our contributions are
1) We demonstrate a programmable optics-based privacy frame-

work that enables pre-capture implementations of mask-
based privacy algorithms such as k-anonymity and black-out.
We also provide theory to miniaturize these designs within
the smallest sensor volume.

2) We show how to select a defocus blur that provides a certain
level of privacy over a working region, within the limits
of sensor size. We show applications where defocus blur
provides both privacy and utility for time-of-flight, thermal
and near-infrared sensors.

3) We implement angular scale space analysis using an optical
array, with most of the power hungry difference-of-gaussian
computations performed pre-capture. We demonstrate human
head tracking with this sensor. We provide an optical ver-
sion of the knapsack problem to miniaturize such multi-
aperture optical privacy preserving sensors in the smallest
mass/volume.

2 BACKGROUND

The work presented in paper lies at the intersection of privacy
preserving computer vision and small-scale computer vision. This
section aims to provide some relevant background for these two
fields.

2.1 Privacy Preserving Computer Vision

Conventional privacy preserving systems for computer vision
enforce privacy via post-capture application of existing software-
based privacy algorithms. Many such software-based algorithms
exist. Pixelation, Gaussian blurring, face swapping [1] and black-
out [2] provide privacy by trading off image utility [3], [4].
Encryption based schemes such as [5], [6], [7] enable recovery
of the original data, via a key. Methods based on k-anonymity [8]
provably bound face recognition rate at 1/k while maintaining
image utility [9], [10], [11], [12], [13]. This bound is achieved
by averaging together each target face in an image with k � 1
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other faces selected from a database. Despite the successes such
software-based algorithms, privacy systems that rely on the post
capture application of these algorithms have an inherit vulnerabil-
ity in that there exists a period, after capture, when privacy has
not yet been enforced, where the raw data is vulnerable to attacks.
This has resulted in the development of computational cameras for
privacy preserving computer vision

Computational cameras for privacy preserving computer vi-
sion aim to remove the post-capture vulnerability by selectively
sampling the light-field such that they only capture non-sensitive
information. Within this space, there are four main approaches.
The first approach leverages existing embedded technology to
perform privacy algorithms at the camera level itself and then
uses encryption or other methods to manage the information
pipeline [14], [15], [16], [17]. The second approach, like the
first, uses hardware integration to increase security, but aims to
build novel sensors that preserve privacy through watermarking
[18], cartooning [19] and pixel averaging [20]. The third approach
aims to develop novel privacy algorithms that enforce privacy
during image fomation, via manipulation of sensor processes
such as gain, digitization and exposure time [21]. The fourth
approach aims to add a complementary layer of security by fixing
conventional sensors with specialized privacy optics that remove
sensitive data prior to image capture, through filtering of the
incident light-field. The methods presented in this paper all fall
within the fourth approach. A range of other specialized privacy
optics have also been proposed. [22] proposed a system using
thermal motion sensors that enables two-person motion tracking
in a room. [23] used a line sensor and cylindrical lens to detect
a person’s position and movement. [24] controlled the light-
transport to shadow sensitive regions, removing data-utility in
those areas. [25] showed a system consisting of five low resolution
cameras, installed in a single room, that enables private human
activity recognition. Our sensors differ from this work in that
they are mobile, i.e., do not require any form of installation. [26]
proposed a system that uses a thermal sensor to detect faces and
a second sensor fitted with an LCoS capture private images. In
this paper, we present a programmable optics-based framework
that generalizes [26]. Using this framework, we show pre-capture
implementations of black-out and k-anonymity. We also show
applications where defocus optics provide both privacy and utility
for time-of-flight, thermal, and near-infrared sensors.

Compressive sensing techniques have found application in
imaging and vision [27], [28]. Some approaches use optical pro-
jections [28] and have been integrated with classification [29] and
encryption [30], [31], [32]. [33] proposed directly sensing random
scene projections and reconstructing a decimated version of the
scene to enable privacy preserving object tracking and secrecy
in the sense the original frames cannot be recovered without
knowledge of the seed used to generate the sampling matrices. In
future work, we may consider implementing CS-based algorithms
within our optical frame work.

2.2 Small-Scale Computer Vision Sensors
The embedded systems community has proposed many vision
techniques for low-power hardware [34], [35], [36]. However, for
micro-scale platforms, the average power consumption is often
in the range of milli-Watts or micro-Watts [37], [38], [39], [40],
[41], [42]. In these scenarios, our approach of jointly considering
optics, sensing, and computation within the context of platform
constraints will be crucial.

Fig. 1. Optical Elements used for Defocus. We use either lensless or
lenslet designs in this paper for optical defocus. The figure shows that
any lenslet sensor of diameter d and image distance u can be modeled
as a lensless sensor of height u and pinhole size d, and therefore we
use only the lensless version in our theory.

Fourier optics [43], [44] have limited impact for miniature
vision systems that must process incoherent scene radiance. How-
ever, controllable PSFs in conjunction with post-capture process-
ing are widely used in computer vision [45], [46], [47], [48]. In
contrast to these approaches, we seek optics like [49], [50], [51],
[52], that distill the incoming light-field for vision applications.
[49] also provides design tools to maximize a sensor’s effective-
field-of-view (eFOV). eFOV is defined as the the range of viewing
angles over which this angular support of a sensor is consistent. In
this paper, we expand these tools to include privacy considerations.

Our optical knapsack approach, presented in Sec. 3.2.2, for
miniaturizing multi-aperture sensors is a miniature analog to larger
camera sensor network coverage optimizations [53], [54], [55],
[56].

3 FIXED PRIVACY OPTICS

We now consider fixed privacy optics for single and multi-aperture
sensor designs. Fixed privacy optics have two main advantages.
Firstly, since the optics do not contain electronics, they are highly
robust against software-based attacks. Secondly, since the optics
directly filter the incident light-field they reduce the required on-
board computations, without drawing on any on-board power.

3.1 Privacy Optics

In this section, we provide a tool for designing fixed-optics sensors
that perform intentional optical defocus for privacy. As in [49],
we assume a distant scene which can be represented by intensity
variation over the hemisphere of directions (i.e. the local light-
field is a function of azimuth and elevation angles). Unlike [49],
we augment the hemispherical model with a notion of scene depth,
where the angular support of an object reduces as its distance to
the sensor increases. We use either lensless or lens-based optics
for defocus and, as illustrated in Fig. 1, these apply an angular
defocus kernel over the hemispherical visual field. The range
of viewing angles over which this angular support is consistent,
is known as the effective FOV or eFOV [49]. We chose the
optical elements in Fig. 1 for fabrication convenience and our
theory can be used with other FOV [49], [57], [58] elements.
As demonstrated by [49], every lensless element can be replaced
with a corresponding lenslet element. Such an equivalent pair is
illustrated in Fig. 1. In this paper, we utilize the lensless theory,
even when considering lenslet systems.

The inputs to our design tool are the defocus specifications
⌃ = {�,�, R,⇥, ⇢}, where � is the angular error tolerance, �
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Fig. 2. Face Recognition Rate vs Simulated Optical Defocus. We
quantified optical defocus privacy empirically by convolving face images
from the FERET database [59] with a Gaussian filters of standard
deviations {2, 4, 8, 16, 32, 64, 128, 256}, to simulate optical defocus, and
performing face recognition on filtered images. Three face recognition
algorithms were tested: Principle Components Analysis, Linear Discrim-
inant Analysis, and Elastic Bunch Graph Matching.

is the desired defocus given in terms of a Gaussian blur on an
image of resolution R and FOV ⇥, and ⇢ is the length of the
biggest target feature that is to be degraded by defocus blurring.
For example, for a sensor designed to de-identify faces, ⇢ might
be the size in millimeters of large facial features, such as eyes.
The field of view and resolution are necessary to relate standard
deviation, a dimensionless quantity, to an angular support defocus
blur. The output of the tool are lensless sensor dimensions and
characteristics, such as eFOV and angular support.

If we can approximate a gaussian filter of standard deviation �
by a box blur corresponding to 2�, then, for defocus specifications
⌃, the angular support is

!
o

= 2�

✓
⇥

R

◆
. (1)

Like [60], we quantified the privacy of our algorithm by simu-
lating it in software and testing against the CSU Face Identification
Evaluation System (FES) [61]. To simulate optical defocus, probe
face images from the FERET database [59] were convolved with
a Gaussian filter before inputing them to the FES. The gallery
images were filtered equivalently to improve recognition [62].
The fa and fb partitions were set as the gallery and probe images
respectively. This experiment was repeated for Gaussian filters of
standard deviations {2, 4, 8, 16, 32, 64, 128, 256}. Fig 2. shows
the rank 1 recognition rate of three algorithms from the FES
for the set of standard deviations. The three algorithms tested
were Principle Components Analysis (PCA), Linear Discriminant
Analysis (LDA), and Elastic Bunch Graph Matching (EBGM).
From Fig. 2. it is clear that heavy Gaussian filtering significantly
decreases recognition rate. For all three algorithms, the rank 1
recognition rate decreased to less than %12 when the standard
deviation was greater than 100.

3.2 Miniaturization

3.2.1 Miniaturization of Single-Aperture Sensor

In [49], a lensless sensor was optimally designed for maximum
eFOV given an angular support !

o

and angular support tolerance
�. We provide an additional design output, z

min

, which is the
minimum distance between the sensor and the target in order

Fig. 3. Optical Knapsack Algorithm. A traditional knapsack solution for
packing optical elements might fail if the elements covered the same
portion of the visual field. Our optical knapsack solution takes into
account the angular coverage of each sensor and maintains the pseudo-
polynomial nature of the original dynamic programming knapsack solu-
tion.

for the sensor to preserve the degree of privacy specified by the
defocus specifications and it is given by,

z
min

=
⇢

2tan(!o

2 )
. (2)

In summary, our algorithm takes as input defocus specifications
⌃ = {�, ⇢,⇥, R,�}, computes !

o

as described in Eq. 1 and
applies the method of [49] plus Eq. 2 to output the optimal design
with maximum eFOV, ⇧ = {u, d, z

min

}.

3.2.2 Miniaturization of Multi-Aperture Sensor.
In this section, we arrange optical elements within the constraints
of small devices. Such packing problems have been studied in
many domains [63] and the knapsack problem is a well-known
instantiation [64]. We propose an optical variation on the knapsack
problem that takes into account each element’s angular coverage.

To see why this is needed, consider applying the traditional
knapsack problem for a set of optical elements. Let the total size
(mass, volume or area) available for sensing optics be A. Suppose
each optical element i has a field-of-view f

i

and a size of a
i

. Given
n elements with indices 0  i  n, we want to find an identity
vector x of length n s.t. x

i

2 (0, 1) and ⌃
i

x
i

f
i

is maximized
whereas ⌃

i

x
i

a
i

 A. While this problem is NP-hard, a pseudo-
polynomial algorithm O(nA) has been proposed by recursively
creating an n⇥A array M ;

M [0, a] = 0 if 0  a  A

M [i, a] = �1 if a < 0

M [i, a] = max(M [i� 1, a], fi +M [i� 1, a� ai]),

where M(i, a) contains the maximum eFOV possible with the
first i elements within size constraints a and so M(n,A) is the
solution. Since the a

i

values may be non-integers, these are usually
multiplied by 10s, where s is the desired number of significant
digits. This well-known approach fails to provide the best optical
element packing, because greedily increasing total eFOV does not
guarantee coverage of the visual hemisphere. For example, a set
of 5 identical elements, each having a eFOV of ⇡

5 , would seem to
have a sum total of 180� eFOV but would redundantly cover the
same angular region.

Our optical knapsack algorithm takes into account angular
coverage by first discretizing the field-of-view into � angular
regions, each with a solid angle of ⇡

�

. We define an array K(n,�),
where K(i, b) = 1 if that optical element covers the angular
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Fig. 4. Edge detection application with optical packing. Wide angle optical edge detection has been shown [49] by subtracting sensor
measurements from two different lensless apertures. [49]’s approach in (I) is unable to utilize the full sensor size because it requires each image
to come from one sensor. In contrast, our optical knapsack technique can pack the sensor plane with multiple optical elements (II) and synthesize,
in software, a wider field of view. (II) demonstrates how the angular support of multiple elements vary over the visual field, and how different
measurements from multiple apertures are combined to create a mosaicked image with a larger eFOV. We perform edge detection using both the
configuration from [49] and our packed sensor on a simple scene consisting of a white blob on a dark background. When the target is directly in
front of the sensor (III), both optical configurations produce reasonable edge maps. At a particular slanted angle (in this case, around 15 degrees
due to vignetting) [49]’s approach (IV) does not view the target (images show sensor noise) and no edges are detected. The edges are still visible
for our design, demonstrating its larger field of view.

regions b in its field-of-view, and is zero everywhere else. We also
define the array M to be three-dimensional of size n ⇥ A ⇥ �.
As before, each entry of M(i, a, 0) contains the maximum field
of view that can be obtained with the first i elements with a sensor
of size a and M(n,A, 0) contains the solution to the knapsack
problem. Entries M(i, a, 1) through M(i, a,�) are binary, and
contain a 1 if that angular region is covered by the elements
corresponding to the maximum field-of-view M(i, a, 0) and a
zero otherwise. The array M is initialized as,

M [i, a, b] = 0, if 0  a  A, 0  i  n and 0  b  �

and is recursively updated as
If a < 0 M [i, a, 0] = �1
For any other a, for any i
If
M [i� 1, a, 0] <
fi +M [i� 1, a� ai, 0]
andP

1b�

M [i� 1, a, b] <
P

1b�

M [i� 1, a� ai, b] _K[i, b]

8
>>>>>>><

>>>>>>>:

M [i, a, 0] =

fi +M [i� 1, a� ai, 0]

M [i, a, b] =

M [i� 1, a� ai, b] _
K[i, b], b 2 (1,�)

Otherwise 8b M [i, a, b] = M [i� 1, a, b]

where _ represents the logical OR function. This optical knapsack
packing algorithm adds a � multiplications and �+2 additions to
the computational cost of the algorithm. This results in a O(nA�)
algorithm, which is still pseudo-polynomial. As with the original
knapsack problem, if the discretization of A and the angular
regions � are reasonable, the implementation is tractable.

We demonstrate the optical packing algorithm for edge detec-
tion for a simple white disk target (Fig. 4). Our goal is two lensless
sensors, each with angular supports !

o1 = 25� and !
o2 = 45�

and both with error margins of � = 5�. Fig. 4(I) shows [49]’s
approach, with no packing, for a 6.6mm ⇥ 5.5mm sensor and

whose template height had been constrained to u = 2mm. Only a
small portion of the sensor is used, corresponding to an eFOV of
36�. Next we utilized our optical knapsack algorithm to maximize
the eFOV on the given total area. In Fig. 4(II), a five element
design is shown. Note that our algorithm only solves the knapsack
part of the algorithm - the rectangular packing could be performed
using widely known methods [65], but in this case was done
manually. We discretized the template sizes in steps of 0.1mm
and considered 30 different optical elements and discretized the
angular coverage into 36 units of 5 degrees each. Since we targeted
two defocus sensor designs, our 3D tensor was 30 ⇥ 2501 ⇥ 72.
Our dynamic programming algorithm produced the solution in
Fig. 4(II), where the measurements from three elements, with
aperture diameters 2.2mm, 1.9mm and 1.6mm, were mosaicked
to create the image corresponding to !

o2 and the remaining two
elements, with aperture diameters 1.2mm and 0.9mm, were used
to create !

o1. In the figure, the mosaicked measurements were
subtracted to create a DoGs based edge detection. At a grazing
angle, only the packed, wide FOV sensor can still observe the
scene, demonstrating that our optimally packed design has a larger
field of view.

3.3 Example Sensor Designs
3.3.1 Defocused Time-of-flight Sensor
We designed 3D printed privacy optics for the Microsoft Kinect
V2 that enable privacy preserving depth sensing, segmentation,
and full body motion tracking. The privacy optics, shown Fig.
5(III), consisted of a 3D printed plano-convex lens for the depth
sensor, a black-out cover for RGB camera, and a sleeve, which
holds the lens and cover. Our initial implementations [66] used
conventional plano-convex IR lenses from Edmund Optics, which
cost ⇠ $300. Using 3D printing we fabricated comparable lenses
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Fig. 5. Privacy Preserving Depth Sensing and Full-Body Motion Tracking. We designed a fully 3D printed privacy sleeve for the Microsoft
Kinect V2 and that allows accurate depth sensing and motion tracking. The sleeve has a removable 3D printed cover for the color camera and a 3D
printed lens for the IR sensor. As shown in (I), without the privacy sleeve, faces can clearly be identified in both the RGB and IR sensor images. In
contrast, as shown in (II), our privacy sleeve performs optical black-out out for the RGB sensor and optical defocus for the IR sensor, yet the native
Kinect tracking software from Microsoft still performs accurate depth sensing and motion tracking. Close-ups of the 3d printed privacy sleeve and
lens are shown in (III). A plot comparing the measured depth of a person’s head and chest with and with out our privacy sleeve for the documented
depth range of the Kinect, is given in (IV).

for ⇠ $10. The lenses were printed on an Objet260 Connex3 3D
printer using VeroClear-RGD810 transparent printing material and
then manually polished using various grades of sandpaper and a
NOVUS 7100 Plastic Polish Kit.

AMCW TOF cameras approximate depth by measuring the
time-of-flight ⌧ of modulated probing signal, i.e. the time it takes
the probing signal to reflect off a scene point and return to the
camera. Given the time-of-flight ⌧ , the distance d of the scene
point can be computed with d = 1

2c⌧ , where c denotes the
speed of light constant. However, since ⌧ cannot be observed
directly, the phase shift � between the probing signal and the
received signal is instead measured, and ⌧ is approximated using
the the following relation � = �⌧ , where � is the angular
frequency (in rad/sec) of the modulated probing signal. The
probing function is generally assumed to be a sinusoid p(t) given
by p(t) = 1+�cos(�t), 0 < �  1 where � is the amplitude of
the modulated probing signal [67]. Illumination from the probing
signal arrives at a pixel via all optical paths within a pixel’s visual
hemisphere, defined by the camera’s angular support !

o

. Thus, we
model the signal r(t) arriving at each pixel as

r(t) =
Z !

o

2

0

Z 2⇡

0
�(✓,')(1 + �cos(�t� �

�

(✓,')))d✓d'
(3)

where �
�

= t�2d�/c denotes the phase shift w.r.t. to the probing
signal and � is proportional to albedo [67]. Discretizing each
pixel’s visual hemisphere into K optical paths, we approximate

r(t) as a linear combination of cosines

er(t) = c0 + �
NX

n=1

�
n

cos(�t� �
�,n

) (4)

where c0 is some positive scalar. Then, with a bit of phasor
arithmetic

er(t) = c0 + �ejvt
NX

n=1

�
n

e��

�,n

= c0 + �ejvt�e��
�,n .

(5)

Typically, TOF cameras are modeled as pinhole cameras. In phasor
notation (Eq. 5), it is easy to see why the pinhole model is a
sensible assumption: nearby scene points tend to have similar
depths and adding phasors with similar phase results in minimal
smoothing of the phase, despite large amplitude differences. The
same principle applies to a defocused TOF cameras, except that
the circle of confusion is larger. Thus, when the scene geometry
is relatively smooth, our defocusing optics that the affect the IR
amplitude image while leaving the phase (or depth information)
mostly intact.

Figure 5(III) shows our experimental results for Kinect depth
measurements of a tracked human head and chest, with and with-
out our 3D printed defocus optics, for the entire documented
working range of the Kinect. The mean absolute error for the
defocused measurements is 5.7cm and 5cm for the head and
chest measurements respectively. In Fig. 5(II) we show pre-capture
privacy preserving full-body motion tracking with a kinect fitted
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Fig. 6. Defocus with Close-Range IR Overexposure. We designed
a sensor overexposes nearby faces to remove the minimum depth
requirement for defocus privacy. The setup consisted of an IR light
source adjacent to a defocused webcam, with sensitivity in to NIR light,
placed in an unilluminated office (Fig. 6(II,III)). With our setup, faces
were overexposed for distances less than zmin = 1.8m and were
appropriately exposed, but defocused for distances greater than 2.3m.
Fig. 6(I) shows a sequence of four private images of a person standing
3.0m, 2.4m, 1.8m, 0.6m (ordered left to right) from the sensor. 6(IV)
shows an image of a person standing 0.6m without the overexposing
IR light source. Since 0.6m < zmin, this image is not private.

with our privacy sleeve, using the native Kinect tracking API.
The subject in the figure was 1.7m away from the sensor. The
angular support of the IR sensor with the sleeve was 3�, which
corresponds to lensless parameters u = 10mm, d = 0.5mm, a
minimum distance, z

min

= 1.5m for degrading features of 8cm
and an eFOV of 64.7� for � = 1�.

3.3.2 Defocused Near-Infrared Sensor with Close-Range
Overexposure
Optical defocus for privacy, as defined in Section 3, requires
a minimum distance z

min

between the sensor and the target
for the user specified degree of privacy to be enforced. This
constraint can be eliminated, for an optically defocused near-
infrared (NIR) sensor, by placing a NIR light source adjacent to
the sensor, such that nearby faces are overexposed. Since humans
cannot see NIR light, the intensity of the light source can be
adujsted indiscriminately without bothering passersby. However,
overexposure significantly reduces data utility. Fortunately, due to
the inverse square falloff rate of light, if the intensity of the light
source is set to the lowest setting that overexposes faces at z

min

,
the overexposing light source has little effect on image quality for
parts of the scene with distances greater than z

min

.
We validated our design with a proof-of-concept experiment.

The experimental setup consisted of an IR light source adjacent
to a defocused webcam, with sensitivity in to NIR light, placed
in an otherwise unilluminated office (Fig. 6(II,III)). In our setup,
faces were overexposed for distances less than z

min

= 1.8m and
were appropriately exposed, but defocused for distances greater
than 2.3m. Fig. 6(I) shows a sequence of four private images of
a person standing 3.0, 2.4, 1.8, and 0.6 meters from the sensor.
6(IV) shows an image of a person standing 0.6m without the

Fig. 7. Privacy Preserving People Tracking. We fitted a FLIR One
Thermal sensor with an IR Lens to enable privacy preserving people
tracking via pre-capture optical Gaussian blurring. (I) shows the FLIR
One and the IR Lens. (II) shows and image of a face taken with and
without the IR Lens fitted to the FLIR One. Using this system, we were
able to easily perform people tracking by searching for high intensity
blobs in the optically de-identified thermal images (III). Our defocusing
optics preserve approximate temperatures for objects larger than the
largest target feature. We measured the temperatures of a human head
and the background wall at various distances from the sensor, with
and without our defocusing optics, using the native FLIR One thermal
calibration. A graph of the measured temperature with and without our
defocusing optics vs depth is shown in (IV).

overexposing IR light source. Since 0.6m < z
min

, this image is
not private.

3.3.3 Defocused Thermal Sensor
We fitted a FLIR One thermal camera with an IR Lens (Fig. 7(I))
to enable privacy preserving thermal sensing via optical defocus.
The modified sensor had an angular support of 0.9855�, which
corresponds to a minimum distance, z

min

= 4.6m for degrading
features of 8cm, lensless parameters u = 2mm, d = 1.29mm, and
and eFOV of 50.8� for � = 0.2�. Figure 7(II) shows a human
face captured with and without our defocusing optics.

Our defocusing optics preserve approximate temperatures for
objects larger than the largest target feature. Using the native
FLIR One thermal calibration, we measured the temperatures of a
human head and an adjacent position on the wall behind the head
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Fig. 8. Scale and Position from Anisotropically Defocused Linear
Sensors. Building on [23], we show a pre-capture privacy preserving
scale detection two dimensional scene analysis with anisotropically
defocused linear sensors. Our implementation consisted of to two Lu171
Lumenera monochrome sensors (Fig. 9) each fitted with the 3D printed
lens holder and 6mm focal cylindrical lens, shown in (I). Only a single
row of pixels from each sensor was used in the analysis to simulate
using linear sensors. (II) shows how two dimensional scale and position
can be extracted from the local extrema of the sensor outputs, the hori-
zontal and vertical brightness distributions of the scene. Using only the
horizontally oriented sensor from this setup, we calculated the horizontal
scale of a person standing {1.2, 1.8, 2.4, 3.0, 3.7}meters away from the
sensor. (III) shows the measured vs expected scale for each distance.
The mean and standard deviation of the absolute error in the measured
vs expected scale were 0.56pix and 0.46pix respectively.

(background wall), at various distances from the sensor, with and
without our defocusing optics. The results are shown in Fig. 7(IV).
Additionally, we performed privacy preserving people tracking for
an alternate multi-person scene, by searching for high intensity
blobs in the defocused thermal images (Fig. 7(III)). The subjects
in the multi-person scene were more than 5.5m away from the
sensor.

3.3.4 Anisotropically Defocused Linear Sensor
The defocusing effect of cylindrical lenses can be approximated
in software, by an anisotropic Gaussian filter. Thus, we can use
our design tool to design a linear sensor that captures the one-
dimensional brightness distribution of scene. [23] showed that
such a sensor can be used to privately determine a person’s one-
dimensional position and state (fallen or standing up). We ex-
tended [23]’s work in two ways. First, we showed that in addition
to position and state, a person’s scale can also be extracted from
local extrema of the brightness distribution (Fig. 8(II)). Second,
we showed two dimensional scene analysis (scale and position)
by pairing two orthogonally oriented linear imaging arrays fitted
with cylindrical lenses. Two-dimensional scale analysis for head
detection in the Sec. 4.3.1.

Our implementation consisted of two Lu171 Lumenera
monochrome sensors fitted with 3D printed optics holders and
6mm focal cylindrical lenses (Fig. 8(I)). Only a single row of
pixels from each sensor was used in the analysis to simulate
using linear sensors. Using only the horizontally oriented sensor

Fig. 9. Privacy Preserving Angular Blob Detection. Our privacy pre-
serving optical blob detector uses a Lumenera Lu-171 sensor and 3D
printed/laser cut optics. The sensor was divided into multiple elements,
where each performs pre-capture optical defocus filtering of different
aperture radii. Therefore, a single frame contains a gaussian pyramid
which can be used for angular blob detection. Using our prototype we
measured the angular scale range of white circles of varying sizes on
black background located 20.32cm from the sensor. A graph of the
measured angular scale range and the expected angular scale vs circle
radius is the bottom row of the figure.

from this setup, we calculated the horizontal scale of a person at
various distances from the sensor. Fig. 8(I) shows the measured vs
expected scale. The mean and standard deviation of the absolute
error were 0.56pix and 0.46pix respectively.

3.3.5 Defocused Sensor Array

With the fixed-optics single aperture sensors, most of the actual vi-
sion computations (people counting, tracking, etc.) are performed
post-capture. Here, we exploit sensor arrays, which have proved
useful in many domains [67], to increase the the number of pre-
capture vision computations.

A classical approach to blob detection is to convolve an image
with a series of Laplacian of Gaussian (LoG) filters for scale-
space analysis [68]. The LoG operators are usually approximated
by differences of Gaussians (DoGs), and [49] demonstrated such
computations with a single pair of lensless sensors. We build a
lensless sensor array that perform both blob detection and privacy
preserving defocus together. This partitions the photodetector
into n sub-images with unique angular supports !

o1 < !
o2 <

... < !
o

n

. Our prototype build with an aperture array and
baffles is shown in Fig. 9. In a single shot, the sensor directly
captures an image’s Gaussian pyramid. When compared with a
software implementation of a Gaussian pyramid, our optical array
enables privacy preservation before capture. The degree of privacy
afforded is directly related to the minimum angular defocus kernel
!
o1 . The element with the least eFOV determines the array’s
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eFOV (although this is relaxed in the next section). Finally, the
privacy preserving advantage of these arrays comes with tradeoffs;
for example, the optical array provides a fixed sampling of the
scale space (scale granularity) and can estimate blobs only in a
fixed scale range.

We built a privacy preserving angular scale-space blob de-
tector. In Fig. 9 we show our prototype, which consisted of a
camera (Lu-171, Lumenera Inc.) with custom 3D-printed template
assembly and binary templates cut into black card paper using a
100-micron laser (VLS3.50, Versa Inc.). We divided the camera
photodetector plane into nine single-aperture sensor elements us-
ing opaque baffles created from layered paper to prevent crosstalk
between the sensor elements. The Lu-171 has a resolution of
1280x1024 so the photodetector array was partitioned into a 3x3
array of 320x320 pixels.

We validated our theory experimentally by using a prototype
to determine the angular scale range of white circles of varying
sizes on black background located 20.32cm from the sensor. The
results are shown in Fig. 9. The angular scale range was correctly
detected for all of the circles except for the circle with radius
0.64, which was off by 0.52 degrees. The angular supports for the
prototype used in the experiment were {!

o1 = 0.44�,!
o2 =

0.82�,!
o3 = 0.97�,!

o4 = 1.26�,!
o5 = 1.89�,!

o6 =
3.06�,!

o7 = 5.48�,!
o8 = 10.35�,!

o9 = 20.21�}.
As an example application, we developed a second prototype

for low-power head tracking. Head-tracking was achieved by
first detecting regions of interest using scale-space blob detection
and then running Viola-Jones object on the detected regions of
interest. Identifying regions of interest using scale-space analysis
decreased the image search area for the Viola-Jones detector by
50%. Fig. 9. shows a frame from a 2 minute office sequence, where
the head was tracked correctly in 98% of frames. The optical
parameters of the prototype used to capture the office sequence
were {� = 4�,!

o1 = 9.76�,!
o2 = 20.28�,!

o3 = 40.37�},
which correspond to a minimum distance z

min

= 46.9cm, for
degrading features of 8cm and an eFOV of 39.54�. The Viola-
Jones object detector was trained and tested on images of head
blobs moving in an various office scenes.

3.4 Limitations
Although, in this paper, we show various example vision tasks that
work well with optically defocused data, there are many vision
tasks for which this is not the case. Furthermore, although de-
blurring of heavily defocused images is an open problem [69],
[70], [71], [72], [73], [74], [75], the use optical defocus for privacy
may still be susceptible to reverse engineering.

4 PROGRAMMABLE PRIVACY OPTICS

In this section, we provide a framework, which leverages pro-
grammable privacy optics to enable pre-capture implementations
of mask-based privacy algorithms such as k-anonymity and black-
out.

4.1 Privacy Optics
The proposed framework, illustrated in Fig. 10(I), consists of an
output sensor (approximated by an ideal pinhole camera), whose
viewing path is split between the scene and an active optical mask,
such as a projector or electronic display, and a pre-capture privacy
preserving alignment sensor. With this setup, masking of sensitive

Fig. 10. Programmable Optics for Pre-Capture Privacy. In (I), we
show a ray diagram for our programmable optics-based pre-capture
privacy framework. In (II), we show the required mappings between the
various system components. In (III), we demonstrate how to reduce the
volume occupied by the display and beamsplitter, determined by lbeam
and lmask. For the perspective case, we show that there exists two
configurations with identical, minimum volume.

targets requires five steps: 1) Capture alignment image using
alignment sensor; 2) Segment targets in the alignment image; 3)
Generate privacy masks using target segmentations; 4) Display
privacy masks on electronic display; 5) Capture private image
using output sensor. We formulate these five steps as follows.

The radiance I measured at each camera pixel (x, y) that
views a scene point P is given by,

I(x, y) = e
P

I
P

+ e
M

I
display

(M(x, y)), (6)

where I
P

is the radiance from P , M is the privacy mask displayed
by the electronic display, I

display

maps a privacy mask pixel
intensity to its displayed radiance, and e

P

and e
M

are the ratios
of the optical path split between the scene and the mask, which
can range from 0 to 1. M(x, y) is given by

M(x, y) =
X

1it�1

F
i

(H1(x, y)) (7)

where H1 is a transformation between the camera and mask
planes, and F

i

are the masks for the t segmented target planes
in the alignment image. The masks F

i

are given by

F
i

(x, y) =

8
<

:
0, L(x0, y0) = 0

P
1jk�1

w
j

D
j

(H2(H3(x, y))), L(x0, y0) = 1

(8)
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Fig. 11. Pre-Capture Black-out, K-Anonymity, and Face Recognition. We designed two programmable optics-based pre-capture privacy sensors.
Our first prototype, Physical Setup 1, consisted of a 5” LED, a 2” beam splitter, and a Microsoft kinect fitted with our privacy sleeve (Fig. 5). The
color camera on the kinect was used as the system camera and the defocused TOF was used as the segmentation sensor. We implemented a
pre-caputure black-out using this prototype by masking the target with high intensity masks such that the pixels corresponding to the target were
overexposed in the resulting camera images. Segmentation was acheived using the native Microsoft Kinect segmentation algorithm. Our second
prototype, Physical Setup 2, consisted of an 27” LED, a 14” beam splitter, a webcam, and the pair orthogonally oriented defocused linear sensors
from Fig. 8. The webcam was used as the system camera and the line sensors were used as the alignment sensors. Using this prototype we
implemented pre-capture k-anonymity for faces and privacy preserving face recognition.

where (x0, y0) = H1(H2(x, y)), D
j

are digital images, w
j

are user defined weights, L
i

(x, y) is binary segmentation in the
alignment image for target i, H2 is a transformation between the
segmented target plane and the camera, and H3 is a transformation
between each digital images and the segmented target plane. If the
alignment sensor and the camera are collocated and of the same
resolution, H2 is an identity matrix. If they are not collocated, then
H2 varies for each segmented target plane and is depth dependent.
Similarly, if the camera and the display mask are collocated and
of the same resolution, H1 is an identity matrix. A graphical
illustration of these transformations is given in Fig. 10(II).

4.2 Miniaturization

We reduce the volume of the optics for small form factor plat-
forms. For many algorithms it is desirable that the resolution
of the display be equal to or greater than the resolution of the
sensor. Here we discuss how to reduce the size of the optical setup
while still maintaining the desired display resolution. We assume
that the camera sensor in Fig. 10 is optimally miniaturized by a
method such as [49]. For clarity we consider a 2D ray diagram,
but since our optics are symmetric these arguments hold in three
dimensions. Let the beamsplitter angle be fixed at � and the sensor
FOV be ✓. Let the minimum size of the mask that still affords the
desired resolution be M

min

. W.l.o.g let the mask be perpendicular
to the reflected optical axis.

This leaves just two degrees of freedom for the optics; the
sensor-beamsplitter distance l

beam

along the sensor’s optical axis
and the mask-beamsplitter distance l

mask

along the reflected
optical axis. In an orthographic version of optics, shown in Fig.
10 (I), the size of the mask does not change as it is translated
towards the sensor. Therefore, a mask of minimum size M

min

can be moved as close as possible to the sensor without occluding
the field-of-view as in Fig. 10 (I).

In the perspective case [76] the size of the mask reduces as
it slides along the pencil of rays, as in Fig. 10 (II). Once the

minimum mask size M
min

is reached, that configuration has the
minimum optical size, given by 4CDE’s area.

We show that there exists an alternate choice, in the perspective
case, for the minimum optical size. To maintain the minimum
resolution, any mask position closer to the sensor must be verti-
cally shifted, as in Fig. 10 (II). The area of these optics is given
by 4C

0
D

0
E + C

0
B

0
BC . From similar triangles, we can write

4C
0
D

0
E as being created from 4CDE by a scale factor 1

s

, and
then equate the two configurations in Fig. 10 (II),

4CDE(1� 1

s
) = C

0
B

0
BC. (9)

Consider 4CDE = 4COE + 4ODE. From the angle-side-
angle theorem, this becomes,

4CDE =

l2beam sin

✓
2 sin�

2 sin(

✓
2 � �)

+

l2beam sin

✓
2 sin�

2 sin(

✓
2 + �)

. (10)

Since 4AB
0
C

0
is a scaled version of 4ABC , the quadrilateral

area C
0
B

0
BC =

4ABC(1� 1

s2
) =

Mminlmask

2

(1� 1

s2
). (11)

Putting Eq. 10 and Eq. 11 into Eq. 9, and setting constant C1 =
sin ✓

2 sin�

2 sin( ✓

2��)
+

sin ✓

2 sin�

2 sin( ✓

2+�)
,

s =

Mminlmask

2C1l2beam �Mminlmask
, (12)

which is an equation for the scaling factor s such that the two
designs in Fig. 10 (II) have the same area. Therefore we have
found two designs that provide the required resolution within the
smallest optical dimensions.
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4.3 Example Sensor Designs

4.3.1 Alignment with Defocused Line Sensors
In this section we show two example applications, k-anonymity
for faces and privacy preserving face recognition. Our prototype,
labeled Physical Setup 2 in Fig. 11, consisted of an 27” LED for
the display, a 14” beam splitter, a webcam, and a pair orthogonally
oriented linear sensors sensors with 6mm focal length cylindrical
lenses. The webcam was used as the output camera and the pair
of line sensors were used as the alignment sensors. Output images
were captured at 30 FPS.

K-anonymity for faces [8], [9] enables face de-identification by
averaging together a target face image with k� 1 of its neighbors
(according to some similarity metric). The resulting average image
has an algorithm-invariant face recognition rate upper bound of 1

k

.
We present what is, to our knowledge, the first ever optical imple-
mentation of k-anonymity for faces. Target faces were averaged
with k � 1 faces from a database by displaying privacy masks,
generated via linear combinations of k�1 software aligned faces.
We assumed the k � 1 faces, D

j

in Eq. 8, were captured under
similar illumination environments to the target face. In our current
implementation, access to the database could allow an adversary
to compromise anonymity. In future implementations we plan to
randomize the value k, the choice of k neighbors and the blending
weights w

i

to make de-anonymity combinatorially hard.
Recent efforts have resulted in privacy preserving face recog-

nition frameworks [77], [78], [79], [80]. Here we show a similar
example application, using optical k-anonymity for faces, that
allows recognition of membership to a class while preserving
privacy. Each target is first anonymized via optical k-anonymity
with k-1 faces corresponding to individuals that are not in the
membership class and are not known to the party performing face
recognition. The anonymized face is compared to each face in the
membership class using a similarity metric. If the similarity score
is greater than a threshold then the anonymized face is matched
with that individual. With no match, the system returns the k-
anonymized face. We simulated this system using two subsets of
the FERET Database [81], each containing a single image of a set
of people. For k = {2, 4, 6, 8, 10}, 100 individuals from one subset
were randomly selected as targets and anonymized with their k�1
nearest neighbors found in the same subset by simulating the effect
of the cylindrical lens by integrating the image vertically and
matching with the cosine similarity. The similarity between this
k-anonymized image and 11 other images from the second image
subset was then computed using Face++’s verification algorithms
[82]. One of these is the target image from the second image
subset, while the remaining were randomly selected. Simulation
results are shown in 11. Such a system was built. Fig. 11 shows
examples where individuals were correctly discriminated.

4.3.2 Alignment with Defocused Time-of-Flight Sensor
Black-out is a well known mask-based privacy algorithm for
preserving the anonymity of individuals in video data. We im-
plemented pre-caputure black-out using the prototype, labeled
Physical Setup 1 in Fig. 11, which consisted of a 5” LED display
mask, a 2” beam splitter, and a Microsoft kinect. The Kinect was
fitted with 3D printed privacy optics to defocus the time-of-flight
camera (Fig. 5). The color camera on the kinect was used as the
output camera and the defocused TOF was used as the alignment
sensor. Black-out was achieved by masking the target with high
intensity masks such that the pixels corresponding to the targets

were overexposed in the resulting output camera image. The native
Microsoft Kinect segmentation software was used to segment the
targets. Fig. 11(I) shows our results for black-out faces and bodies.
Output images were captured at 15 FPS.

4.4 Limitations
Miniaturization is limited by use of a display because it com-
mits the system to continuous power use. The primary privacy
limitation is that the framework relies on post-capture pattern
recognition and alignment. Thus, privacy may be compromised,
if pattern recognition or alignment fails at any frame.

5 SUMMARY

Most privacy preserving systems for computer vision, process
images after capture. There exists a moment of vulnerability
in such systems, after capture, when privacy has not yet been
enforced. Our privacy preserving sensors filter the incident light-
field before image capture, while light passes through the sensor
optics, so sensitive information is never measured by the sensor.
Within this framework, we introduce a programmable privacy
optics that enable pre-capture implementations of mask-based
privacy algorithms, such as black-out and k-anonymity, and fixed
privacy optics that provide both privacy and utility for time-of-
flight, thermal, and near-infrared sensors. We also show theory
for miniaturizing the proposed designs, including a novel ”optical
knapsack” solution for finding a field-of-view-optimal arrange-
ment of optical elements. Our privacy preserving sensors enable
applications such as accurate depth sensing, full-body motion
tracking, multiple people tracking and low-power blob detection.
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