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Abstract. With over a billion sold each year, cameras are not only
becoming ubiquitous, but are driving progress in a wide range of domains
such as mixed reality, robotics, and more. However, severe concerns
regarding the privacy implications of camera-based solutions currently
limit the range of environments where cameras can be deployed. The key
question we address is: Can cameras be enhanced with a scalable solu-
tion to preserve users’ privacy without degrading their machine intelli-
gence capabilities? Our solution is a novel end-to-end adversarial learning
pipeline in which a phase mask placed at the aperture plane of a cam-
era is jointly optimized with respect to privacy and utility objectives.
We conduct an extensive design space analysis to determine operating
points with desirable privacy-utility tradeoffs that are also amenable to
sensor fabrication and real-world constraints. We demonstrate the first
working prototype that enables passive depth estimation while inhibiting
face identification.
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1 Introduction

Computer vision is increasingly enabling automatic extraction of task-specific
insights from images, but its use in ubiquitously deployed cameras poses signif-
icant privacy concerns [3,35]. These concerns are further heightened by the fact
that most cameras today are connected to the internet, leaving them vulnerable
to data sniffing attacks. Existing solutions for improving visual privacy include
post-capture image sanitization (blurring, resolution loss, etc.), or post-capture
image encryption. Unfortunately, these solutions are vulnerable to typical sniff-
ing attacks that can get direct access to the original captures rich in sensitive
information.
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Fig. 1. Learning phase mask for privacy-preserving passive depth estimation

This leads to two fundamental questions: Can computational cameras for
machine intelligence be designed to excel at particular tasks while ensuring
pre-capture privacy with respect to specific sensitive information? And, can such
cameras be realized in practice, to achieve advantageous privacy-utility trade-offs
despite non-idealities in themodeling and fabrication process? This paper answers
both the questions in the affirmative.

Unlike conventional post-capture visual privacy methods, our learned camera
optics filter out privacy sensitive information prior to image capture, directly
from the incident light-field – ensuring that private data never reaches the digital
domain where it’s susceptible to sniffing and other attacks. The learned filter can
be optically implemented using a single phase mask inserted in the aperture plane
of a normal camera – making the design practical and scalable. Development
of our pre-capture privacy aware computational camera is driven by a novel
adversarial-learning-based design principle for jointly optimizing the phase mask
and downstream neural networks that enables us to achieve flexible tradeoffs for
the utilitiy task of depth estimation and privacy task of avoiding face recognition.

Since, many downstream computer vision applications such as scene under-
standing, action recognition, planning and navigation have depth as a prerequi-
site, it serves as an information rich utility objective. We validate this notion by
showing depth-based action recognition using private depth estimates from our
learned sensor. Our optimized phase masks filter out high frequency information
to obfuscate face identity while the resulting depth dependent encodings enable
depth estimation.

We make the following contributions:

1. We present an end-to-end adversarial learning framework for optimizing the
sensor optics with respect to utility and privacy objectives. We demonstrate
the application of this design principle by optimizing the phase mask of a
sensor to enable depth estimation while inhibiting face recognition.
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2. We conduct an extensive design space analysis of sensor configurations with
respect to phase mask design, focus settings and resolution to determine oper-
ating points with desirable privacy-utility tradeoffs that are also amenable to
sensor fabrication and real-world constraints.

3. We study the impact of undiffracted light and demonstrate that it plays an
important role when designing diffractive optics for privacy filtering.

4. We present the first physically realized learned computational camera that
has been shown, via quantitative evaluations on real data, to provide pre-
capture privacy and high utility. Through both simulated and real world
experiments, we demonstrate that our prototype successfully renders human
faces unidentifiable while enabling estimation of depth maps.

2 Related Work

The intersection of privacy, computer vision and computational imaging is
related to many research areas. Here we summarize related works and explain
how our framework is distinct. With respect to privacy, the focus of this paper is
on visual privacy [37], i.e., on inhibiting estimation of sensitive attributes from
imagery data. Other forms of privacy, such differential privacy [14] and federated
learning [63] that aim to publish aggregate information about a database while
limiting disclosure of database records are outside the scope of this paper.

In recent years, concerns regarding data sniffing attacks have led to devel-
opment of pre-capture privacy cameras that apply privacy encodings at the
sensor level via a trusted-hardware layer [15,34,42,56] and/or filtering optics
[36,40,41,55]. Our approach, like [20,49], is a generalization of these methods in
that de-identification is driven through automatic inference rather than manually
designed strategies. However, we employ a more realistic physics model, which
enables us to reproduce our simulated results in a fully working hardware proto-
type. To our knowledge, we are the first to successfully port a learned pre-capture
privacy sensor to a real prototype device and demonstrate, via quantitative eval-
uations on real data, that it provides both privacy and utility. Finally, we also
show an in-depth analysis of the sensor design space that provides critical insight
into how privacy is being achieved.

Many prior visual privacy methods have relied on domain knowledge and
hand-crafted heuristics—such as pixelation, blurring, face replacement, etc.—to
degrade sensitive information [37]. Such approaches usually fail to achieve privacy-
utility trade-offs comparable to that of more recent learning-based visual privacy
methods. Themost successful learning-based visual privacymethods [9,39,58,61],
leverage adversarial training to learn encoding functions that inhibit estimation
of private attributes by downstream discriminator models, yet still enable estima-
tion of utility attributes by downstream utility models. This is a natural formula-
tion, as an effective attack method to estimate the value of a private attribute is
to train a neural network on a large set of encoded images. A similar approach has
also been used to learn encoding functions that produce fair or unbiased encod-
ings [2,24,25]. Such encodings can be thought of as private representations invari-
ant to sensitive attributes such as ethnicity or gender. Adversarial training has
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also been used to learn adversarial perturbations that fool classifiers that expect
natural images, but such classifiers recover when retrained on examples with the
perturbations [10,31,32,45]. Finally, [38] learns adversarial perturbations for spe-
cific camera optics and image processing pipelines.We seek image transformations
that inhibit estimation of the private attributes even after a classifier is retrained
on encoded images.

Recent works have shown that modern deep learning tools can be used to
efficiently model and optimize the end-to-end computational imaging process.
This approach has been successfully leveraged to design computational sensors
with improved performance across a range of tasks: demoisaicing [7], monocular
depth estimation [4,8,18,19,57], extended depth of field and super-resolution
[47], non-paraxial imaging [23], object detection [51] and high dynamic range
imaging [30,48]. We present a computational imaging design principle that not
only enables improved performance on a target utility task, but also inhibits
estimation of private attributes.

3 Method

Our goal is end-to-end optimization of a sensor’s optical elements with respect to
privacy and utility objectives. To achieve this, we employ an adversarial learn-
ing formulation in which a sensor layer with learnable parameters is trained to
simultaneously (a) promote the success of UtilityNet, a downstream neural
network aims to solve a target vision task, e.g., depth estimation, and (b) inhibit
the success of AttackNet, a downstream neural network that seeks to infer pri-
vate information from sensor images, e.g., face identification. See Fig. 7 of the
appendix for a summary of the entire optimization scheme.

3.1 Sensor Layer

Like [57], our sensor layer consists of a conventional imaging system with a
fixed focusing lens and learnable phase mask positioned in the aperture plane.
Accordingly, we follow [57] and employ computational Fourier optics [17] to
model the sensor via a pupil function:

Pλ,z(x1, y1) = A(x1, y1) e−jkλ
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where A,φmask,φlens, h ∈ RW1×H1 denote the amplitude modulation due to the
aperture, the phasemodulations due to the phasemask and lens, and the learnable
heights of the phase mask pixels respectively; z denotes the scene point distance;
u the focal plane distance of the lens; f the focal length the lens; kλ = 2π

λ the wave
number; and ∆n the difference between the refractive indices of air and the phase
mask material. In an important deviation from [8], we introduce a new variable
ν > 0 into the sensor model to account for the portion of light that travels through
the phase mask undiffracted. The reason for this is that undiffracted light may, as
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we show in Sect. 4.1, leak privacy-sensitive information if not accounted for. Since
our goal is to design a sensor that optically filters out privacy-sensitive informa-
tion, keeping track of the undiffracted light is critical. Finally, let Iλ ∈ RW2×H2

and M ∈ RW2×H2 denote an all-in-focus image and its corresponding depth map
respectively. Then, the image formed by the sensor layer is
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where F denotes the discrete Fourier transform; ∗ the convolution operator;
z1, ..., zN a set of discrete depths; s the size of PSFλ,zi ; 1M(x2,y2)=zi ∈ RW2×H2

an indicator function that is true when M(x2, y2) = zi; and Bj a max-pool
operation with a kernel of size j × j. Note, we normalize over all N depths such
that

∑N
i=1 Bs(1M(x2,y2)=zi) = 1.

Optimization. The sensor layer S : RW2×H2×3 → RW2×H2×3 maps an all-in-
focus image I to a sensor image I ′ = S(I). Our goal is to optimize heights of
the phase mask h ∈ RW1×H1 such that the sensor images I ′ cannot be used for
estimation of sensitive attributes g(I) ∈ G, but can be used for estimation of the
target attributes t(I) ∈ T. To achieve this, we employ an adversarial training
formulation in which the sensor layer is trained to simultaneously promote the
success of UtilityNet U : RW2×H2×3 → T while inhibiting the success of
AttackNet A : RW2×H2×3 → G.

Let LU and LA denote the loss functions for UtilityNet and AttackNet
respectively. Then, the objective function for the sensor layer is given by

LS(I) = min
h

LU

(
t(I), U(I ′)

)
− ηLA

(
g(I), A(I ′)

)
, (3)

where η denotes a weight parameter to balance the privacy and utility trade off.
To implement this loss function, we apply alternating gradient updates to the
height map (sensor layer) and the weights of the downstream networks: In step
1, we update the height map and weights of UtilityNet together and in step 2,
we update the weights of AttackNet while the sensor layer and Utilitynet
are fixed. For our experiments, we set η = 0.01 and we used the Adam optimizer
[26] with β1 = 0.9, β2 = 0.999, ϵ = 1e–8 and a learning rate of 0.001. We also
bound the heights of the phase mask pixels between [0,1.525]µm by applying a
hardsigmoid function and then a scaling operation to the height map h.

3.2 Downstream Neural Networks

Downstream of the sensor layer, we have two neural networks, UtilityNet and
AttackNet. We define the utility task as monocular depth estimation and the
attack task as face identification. Thus, the expected effect of our learned phase
mask is to obfuscate identifiable facial information, while boosting the depth
estimation accuracy.
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ForUtilityNet, we adopt the ResNet-basedmulti-scale network proposed by
[60] and we initialize the model with the pre-trained weights from [44]. For opti-
mization of UtilityNet, we follow [1] and adopt an objective function consisting
of a weighted sum of losses on the depth, gradient and perceptual quality:

LU (y, ŷ) =
1 − SSIM(y, ŷ)

2
+

1
n

[
ξ|y − ŷ|+ |gx(y, ŷ)|+ |gy(y, ŷ)|

]
(4)

where y = 10/ygt denotes the reciprocal of the ground-truth depth map, ŷ the
estimated depth map, and ξ a weighting parameter (which we set to 0.1), n the
number of pixels in the depth map, SSIM structural similarity [54] and gx and
gy compute the differences of the x and y components of gradients of y and ŷ.

For AttackNet, we use the EfficientNet-b0 [50] architecture and adopt a
softmax activation followed by a cross-entropy loss for n-way classification as in
[5]. For testing, we remove the final layer of the network and learn one-vs-all SVM
classifiers for each test subject, using a held-out subset of the evaluation set, as in
[5]. Finally, we train both UtilityNet and AttackNet until saturation using
the Adam optimizer [26] with β1 = 0.9, β2 = 0.999, ϵ = 1e–8 and a learning rate
of 0.001.

3.3 Prototype Sensor

The prototyping pipeline accepts a learned phase mask height map and cul-
minates with fine-tuning of UtilityNet and AttackNet with the calibrated
PSFs (Fig. 8 of appendix). The phase mask is fabricated using two-photon lithog-
raphy and inserted into the aperture plane of a conventional lens system. Section
A of the appendix includes the fabrication details of the prototype for interested
readers.

4 Experimental Results

This section includes both simulation and real results with our prototype sensor.
For all reported results, attack models are retrained after adversarial optimiza-
tion is complete, i.e., after the learnable parameters of the sensor layer have been
permanently fixed. This ensures that the sensor layer cannot be overcome by an
adversary with access to a large set of labeled sensor images. Utility models are
also retrained after the sensor layer is fixed. The full details about the datasets,
evaluation protocols and image formation model are available in Sects.B1, B2
and B3 of the appendix respectively.

4.1 Design Space Analysis

We show a systematic analysis of the sensor design space which is essential in
designing any optical pre-capture privacy sensor. The utility task is fixed to
monocular depth estimation on the NYUv2 dataset [33] and the attack task to
face identification on the VGGFace2 dataset [5]. For face identification, the faces
were resized, as discussed in Sect. B3, to simulate different camera-to-subject
distance between 1–10m and the face identification performance was averaged
over these depth ranges.
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Fig. 2. Design space analysis. The plot on the top left shows depth estimation
(utility) vs face identification (privacy) accuracy for multiple sensor designs (A–H),
with varying phase mask designs, undiffracted PSF sizes and sensor resolutions. The
sensors optimized using our approach (D–H), have a better privacy utility trade-off
(smaller slope) compared to the traditional sensor designs (A–C). The corresponding
modulus-transfer-function (MTF) plots, shown in the top right plot, give an intuition
into the privacy performance of the different sensor designs based on their respective
cut-off frequencies. Lower cut-off frequency corresponds to better privacy (filtering of
facial details). The PSFs of each sensor designs for 3 different depths are shown at the
bottom of the figure. Note, the PSFs corresponding to learned sensors vary significantly
over different depths, which results in better depth estimation performance.

Impact of Phase Mask Design. This section examines how the goal of bal-
ancing privacy and utility objectives can be achieved by optimizing the phase
mask. We compare four sensors with identical parameters, but with four differ-
ent phase mask designs. The four phase mask designs that we consider are: (A)
none; (B) random; (C) optimized to maximize depth estimation performance;
and (D) optimized to maximize depth estimation performance while inhibiting
face identification. At the top left of Fig. 2, we show the privacy-utility trade-off
of each sensor, i.e., the performance of downstream depth estimation and face
identification models for each sensor. At the top right of Fig. 2, we show the
modulation-transfer-function (MTFs) corresponding to the PSFs of each sen-
sor at 1m. The MTFs are computed as the radially averaged magnitude of the
frequency spectrum of the PSFs. The cut-off frequencies are determined by the
noise level of σ = 0.01, which we assume to be Gaussian. At the bottom of
Fig. 2, we show pixel-space visualizations of the depth-dependent point-spread-
functions (PSFs) of each sensor. The presence of the large defocus spot in the
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PSFs of sensors A, B, C, and D is due to fact that all four sensors are focused
at 10cm and a portion of the light travels through the phase masks undiffracted
[52]. For all four sensors, focal length f = 16mm, focal distance u = 10 cm,
sensor size of 8.8×6.6mm, sensor resolution of 64×64 pixels, aperture diameter
d = 8.7mm, phase mask pitch 4.25µm, and we considered a working range of
z = [1, 10]m.

Consider sensor A (no phase mask/naive defocus). Since it is focused at
10 cm and does not have a phase mask, faces located in the working range of
1–10m with be heavily out-of-focus. This is advantageous for privacy as high
frequency facial details will be optically filtered out. This is consistent with
Fig. 2, as the PSFs of sensor A resemble a large Gaussian filter and the MTF
a low-pass filter. Finally, privacy-utility curve in Fig. 2 shows that sensor A
succeeds at reducing face identification accuracy from 80.1% (all-in-focus) images
to 21.7%, but fails to provide satisfactory depth estimation performance, as the
PSFs remain constant over depth, and thus fails to provide a desirable privacy-
utility trade-off.

Consider sensor B (random phase mask). Due to the fact that approximately
10% of the incident light passes through the phase mask undiffracted, its PSF
consist of a linear combination of a diffracted and an undiffracted PSF, as shown
in Fig. 2. The undiffracted PSFs exactly match the PSFs of sensor A, which
resemble a Gaussian filter. The diffracted PSFs are the result of light passing
through the random phase mask, which disperses light uniformly to the entire
receptive field, so the diffracted PSF is effectively a square average filter. Com-
paring the MTFs of sensors A and B in Fig. 2, we can observe that the cut-off
frequency of sensor B is much lower than sensor A. As expected, this results
in sensor B having worse downstream depth estimation and face identification
performance compared to sensor A. Overall, sensor B fails to provide a desirable
privacy-utility trade-off.

Consider sensor C (phase mask optimized to maximize depth estimation per-
formance as in [57]). Although its PSFs also consist of a linear combination of
diffracted and undiffracted PSFs, this is obscured in Fig. 2, by the fact that the
diffracted PSFs are very sparse, which results in the “activated” pixels having a
much higher magnitude than the undiffracted PSFs. Looking now at the MTF of
sensor C in Fig. 2, we observe that optimizing the phase mask for depth estima-
tion resulted in PSFs that don’t filter out any information, which is consistent
with what one would expect. Interestingly, we also see from Fig. 2 that the PSFs
vary with depth, which is also what we would expect if our goal is to maximize
downstream depth estimation performance. Finally, looking at Fig. 2, we see that
depth estimation performance is comparable to the state-of-the-art, but that it
comes at the cost of face identification accuracy also being high (40%). Note,
the reason face identification accuracy is not higher than 40% is that sensor C
has a resolution of 64 × 64 pixels.

Consider sensor D (learned using our proposed adversarial optimization algo-
rithm to maximize depth estimation performance while minimizing face identi-
fication performance). Its PSFs filter out high frequency facial details, yet also
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vary significantly with depth, as shown in the PSFs and MTF of sensor D in
Fig. 2. Both of these outcomes are intuitively consistent with our goal of balanc-
ing privacy and utility. The privacy-utility plot in Fig. 2 confirms this intuition
by showing that downstream depth estimation performance is comparable to the
state-of-the-art and that face identification is limited to an accuracy of 20.5%.

Impact of Undiffracted Light Vis-á-vis Focus Settings. In practice, ν
from Eq. 1 typically varies usually between 0.08 to 0.2 [52], which results in a
non-insignificant amount of undiffracted light reaching the sensor. Previous deep
optics works for depth estimation [8,57] have simply ignored this issue. This was
possible because they were not concerned with leakage of privacy sensitive infor-
mation. For our setting, preventing leakage of privacy sensitive information is
crucial, so the undiffracted light must be modeled. We illustrate this by opti-
mizing the phase masks of three sensors (D, E and F) with undiffracted PSFs
of different sizes and comparing the resulting privacy-utility trade-offs of the
respective sensors. Note, since the undiffracted PSFs don’t depend on the phase
mask design, they can be fixed prior to optimizing the masks. We vary the size
of the undiffracted PSFs by setting the focal distance u = {0.1, 0.17, 1.0}m to
produce sensors with “large”, “medium”, and “small” undiffracted PSFs. For all
three sensors, we fix ν = 0.1, focal length f = 16mm, sensor size of 8.8×6.6mm,
sensor resolution of 64×64 pixels, aperture diameter d = 8.7mm, phase mask
pitch 4.25µm, and we considered a working range of z = [1, 10]m. The PSFs
of each sensor are shown at the bottom of Fig. 2. In the MTF plot in Fig. 2,
we see that larger undiffracted PSFs result in less leakage of privacy sensitive
information. Intuitively, this is reasonable as a larger defocus kernel corresponds
to a lower cut-off frequency, so more information will be filtered out, and this is
consistent with the results shown in privacy-utility trade-off plot in Fig. 2. Thus,
when designing our final sensor, we utilize a large undiffracted PSF.

Impact of Sensor Resolution. Our goal is to design a sensor that inhibits
recovery of privacy sensitive information from encoded sensor images. From an
attacker’s perspective, recovery of sensitive information from encoded images
can be modeled as a conventional inverse problem, so the number of observa-
tions (or sensor resolution) naturally plays an important role. We study this
role by optimizing the phase masks of three sensors with identical parameters,
but different resolutions. The three sensor resolutions we consider are 16×16,
32×32 and 64×64, and the resulting privacy-utility trade-offs are shown in the
top left of Fig. 2. As expected, the lower the sensor resolution, the lower the
face identification accuracy. Interestingly, the ability of the downstream depth
estimation models to produce high quality depths maps of size 256×256 is not
meaningfully impacted by the sensor resolution as scene depth in most natural
settings tends to be a low frequency signal. This is highly advantageous for our
setting as we are able to reduce face identification performance by reducing the
sensor resolution without sacrificing significant depth estimation performance.
Note, for ease of comparison, we display all the sensor PSFs and MTFs using a



Learning Phase Mask for Privacy-Preserving Passive Depth Estimation 513

Fig. 3. Comparisons with existing methods. On the left, we compare the privacy-
utility trade-off of our learned sensor design against four other sensors: a conventional
all-in-focus sensor, a defocused privacy sensor [40], a low resolution privacy sensor
[11] and a random coded aperture privacy sensor [55]. For all sensors, we show the
corresponding face identification accuracy of EfficientNet-b0 [50] on the VGGFace2
dataset, along the x-axis, and the depth estimation accuracy (δ1) of DPT [43] on the
NYU Depth v2 dataset, along the y-axis. For the all-in-focus sensor, we additionally
show the depth estimation performance of [1,16,53,59,64]. On the right, we compare
the monocular depth estimation predictions of DPT operating on conventional all-in-
focus images vs private images from our learned sensor design.

sensor resolution of 64× 64. For all three sensors, focal length f = 16mm, sensor
size of 8.8× 6.6mm, aperture diameter d = 8.7mm, phase mask pitch 4.25µm,
and we considered a working range of z = [1, 10]m.

4.2 Simulation Results

Comparisons with Pre-capture Privacy Sensors. We compare the privacy-
utility trade-off provided by our optimized sensor design (sensor H from Fig. 2)
to an all-in-focus sensor and three existing pre-capture privacy sensors: a heavily
defocused sensor [40], an extremely low-resolution sensor [11], and a sensor with
a random coded aperture mask [55]. For all four sensors, the focal length f =
16mm, the sensor size was 8.8×6.6mm, and a working range of z = [1, 10]m was
considered. For the all-in-focus sensor (N), the focal distance u = ∞, the sensor
resolution was 256× 256 pixels, and the aperture diameter d = 1mm. For the
defocused sensor (O), the focal distance u = 10 cm, the sensor resolution was
256× 256 pixels, and the aperture diameter d = 8.7mm. For the low resolution
sensor (P), the focal distance u = ∞, the sensor resolution was 16×16 pixels,
and the aperture diameter d = 1mm. Lastly, for the coded aperture camera (Q),
the focal distance u = 10 cm, the sensor resolution was 256× 256 pixels, and the
aperture diameter d = 8.7mm. For fair evaluation, new copies of UtilityNet
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Fig. 4. Privacy evaluation. Figure (A) shows the face verification performance of
different attack models on our sensor simulated LFW dataset. A random classifier and
EfficientNet-b0 [50] trained on an all-in-focus LFW dataset serve as our lower and
upper bounds respectively. For figure (B), we train a U-Net [29] style neural network
to reconstruct the original source images from simulated sensor images. The results
show that the U-Net learns to reconstruct low frequency information such as hair color
and skin pigment, but fails to reconstruct the same identity as the original person, as
the high frequency identity information is filtered out by our optimized sensor.

andAttackNet were trained from scratch to test each sensor, using only images
produce by the respective sensor. As shown on the left of Fig. 3, our data-driven
approach (H), achieves a far better privacy-utility trade-off compared to the
three pre-capture sensors (O, P and Q) and the all-in-focus baseline (N). It is
important to note that the sensor resolution and defocus settings of our learned
sensor (H) are the same as the low-res (P) and defocused (O) sensors respectively.
This clearly demonstrates the advantage of our learning based approach over the
fixed sensors.

For completeness, we also compare our learned sensor design against six
state-of-the-art monocular depth estimation methods that operate on all-in-focus
images from conventional sensors. The six methods we compare against are Xie et
al. [59], DORN [16], SDC-depth [53], Yin et al. [64], Alhashim et al. [1] and DPT
[43]. As illustrated in Fig. 3, our approach limits face identification performance
to 5.3% compared to 80.1% for the all-in-focus sensor, while still achieving depth
estimation performance comparable to the state-of-the-art. On the right side of
Fig. 3, we qualitatively compare the predicted depth maps of DPT [43] when
operating on all-in-focus sensor images vs private images from our learned sensor.
Here we note the limitation of our approach as the depth maps produced by our
approach doesn’t preserve very high frequency details.

Privacy Evaluation. In this section, we assess the efficacy of our learned sensor
design (H) at inhibiting facial identification attacks by four different models: Effi-
cientNetb0 [50], DenseNet121 [21], ResNext101 [62], and UNet+EfficientNetb0.
All models are retrained on the private images from our sensor. In the fourth
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Fig. 5. Private depth etimation with prototype sensor. We show the depth
reconstruction performance of our prototype sensor in the wild. Row 1: all-in-focus
images of the scene. Row 2: Images captured by our prototype sensor (16× 16 pixels).
Row 3: Depth map captured by Microsoft Kinect v2. Row 4: Depth maps predicted
from images captured by our prototype sensor. The mean depth estimation accuracy
(δ1) of our predicted depth maps is 83.73%. This is consistent with the 84.69% accuracy
of our simulated results on the NYUv2 Dataset.

model (UNet+EfficientNetb0), the UNet [29] precedes EfficientNetb0 and is
trained to reconstruct the original face images from their encoded counterparts
(i.e., from simulated captures from our learned sensor). Figure 4(A) shows the
performance of the four models in the form of receiver operating characteristic
(ROC) curves and Fig. 4(B) shows some sample reconstructions from the UNet.
Our learned sensor limits face verification performance to an area-under-the-
curve (AUC) of 0.67 ± 0.02 for the best performing model. This represents a
significant obfuscation of face identity information using our sensor design, con-
sidering that the same network, when learned on images from a conventional
sensor, achieves an AUC of 0.99 ± 0.05. Regarding the reconstructions shown
in Fig. 4(B), we can see that while it’s possible to recover some low frequency
information, such hair color and skin pigment, from a sensor image, key high
frequency features, such as the lips, eyes and nose, are incorrectly reconstructed,
which prevents successful facial identification. The full details of the evaluation
are provided in Sect. B4 of the appendix.

Privacy-Preserving Action Recognition. We further evaluate the utility of
our learned sensor design (H) by training a 3D-fused two-stream model (I3D) [6]
for action recognition using simulated color images and predicted depth maps
from our learned sensor. For comparison, we also train an I3D model on conven-
tional all-in-focus color images and “ground-truth” depth maps from a Microsoft
Kinect v2. Both models are trained on the NTURGBD120 [28] dataset using the
cross-setup training and testing protocol. The model trained on outputs from
the Kinect achieved a top 1 and top 5 accuracy of 79.1% and 94.0% respec-
tively. The model trained on outputs from our learned sensor achieved a top 1
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Fig. 6. Privacy evaluation of prototype sensor. (A) Face verification performance
of different attack models on the face images from a dataset of 20 individuals captured
by our sensor prototype. A random classifier and the EfficientNet-b0 attack on all-
in-focus images serve as our lower-bound and upper-bound respectively. (B) Sample
Images from the face verification dataset captured with our prototype sensor (row 2)
with corresponding all-in-focus images (row 1).

and top 5 accuracy of 70.5% and 91.5% respectively. These results demonstrate
that out optimized sensor has the potential impact a range of applications for
which privacy is a major concern, such as elder care, remote health monitoring,
surveillance of sensitive environments (schools, hospitals, etc.), and more.

4.3 Results with Real Prototype Sensor

To demonstrate the viability of our approach, we build a physical prototype
(shown in Fig. 1) of our optimized sensor design (sensor H from Fig. 2) and eval-
uate it’s performance along a range of dimensions. In order to avoid fabricating a
low resolution sensor we simply downsample a high resolution sensor to 16× 16
pixels. The consequences of such a choice are discussed in detail along with the
prototyping pipeline in Sect. A of the appendix.

Privacy-Preserving Depth Estimation with Prototype Sensor. We
present qualitative depth estimation results on real captures from our prototype
sensor in row 4 of Fig. 5. The mean depth estimation accuracy (δ1) for these
results is 83.73%, which is consistent with the 84.69% accuracy of our simulated
results on the NYUv2 Dataset. Images of the corresponding scene captured with
a Kinect color camera and our prototype sensor (16 × 16 pixels) are shown in
rows 1 and 2 respectively, and depth images captured from a stereo calibrated
time-of-flight Kinect sensor are shown in row 3. Qualitatively, the depth esti-
mates from our sensor are comparable to the Kinect measurements, but lack
some of the high frequency details.
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Privacy Evaluation of Prototype Sensor. To validate our prototype sensor’s
ability to inhibit face identification, we capture a novel face verification dataset
using our prototype sensor, consisting of 100 images of 20 subjects (5 images per
subject at different depths). As an upper bound, we also capture an identical
dataset using a conventional all-in-focus color camera. For the evaluation, we
generate 10 sets of 200 pairs of face images for 10-fold cross-validation. Sample
images from our dataset are shown in Fig. 6(B).

For the evaluation, we assume a white-box attack model and use the same
protocol as for our previous simulation-based privacy analysis. The results of
the evaluation, presented in Fig. 6(A), show that our prototype sensor limits
face verification performance to an area-under-the-curve (AUC) of 0.59 ± 0.02
for the best performing model. The same model, when operating on images from
a conventional sensor, achieves an AUC of 0.89 ± 0.01. These results demon-
strate that we are able to reproduce our simulated results with a real hardware
prototype.

5 Conclusions

We believe our framework and prototype sensor design represent a first and
significant advance towards enabling a new generation of pre-capture privacy
aware computational cameras that will greatly expand the range of environ-
ments, technologies, and applications where computer-vision-based solutions can
be deployed. Thus, it becomes important to discuss what other possible util-
ity and privacy tasks our proposed framework can be applied to, to get good
privacy-utility trade-offs. Based on our analysis of the MTFs of various sensor
designs (Fig. 2), a good pair of privacy-utility tasks would be one with contrast-
ing requirements for frequency/detail preservation. For example, for a privacy
task of inhibiting face identification, a utility task of object classification is likely
to work best for objects that are larger than a human face, such as a human
body, furniture, cars, etc.

Our choice of utility and privacy objectives is a rather interesting one. The
optimization makes sure that the psfs produced vary over depth, but still act
as a low pass filter. This enables us to estimate high quality depth maps, while
inhibiting face identification. However, it’s also important to note a limitation of
our choice of privacy-utility tasks. Namely, that the objective of acquiring high-
frequency depth maps comes into direct conflict with the objective of preventing
accurate face identification, resulting in over smoothed depth estimates. Never-
theless, as shown in Sect. 4.2, our estimated depth maps have enough detail for
many downstream vision tasks such as depth-based activity recognition.
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