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Abstract

Modern computer vision services often require users to
share raw feature descriptors with an untrusted server. This
presents an inherent privacy risk, as raw descriptors may be
used to recover the source images from which they were ex-
tracted. To address this issue, researchers [11] recently pro-
posed privatizing image features by embedding them within
an affine subspace containing the original feature as well
as adversarial feature samples. In this paper, we propose
two novel inversion attacks to show that it is possible to
(approximately) recover the original image features from
these embeddings, allowing us to recover privacy-critical
image content. In light of such successes and the lack of
theoretical privacy guarantees afforded by existing visual
privacy methods, we further propose the first method to pri-
vatize image features via local differential privacy, which,
unlike prior approaches, provides a guaranteed bound for
privacy leakage regardless of the strength of the attacks. In
addition, our method yields strong performance in visual lo-
calization as a downstream task while enjoying the privacy
guarantee.

1. Introduction
The extraction and matching of image keypoints with

descriptors is an essential building block for many vi-
sion problems, such as 3D reconstruction [2], image re-
trieval [28] and recognition [40]. Thus, modern com-
puter vision services often require the users to share feature
descriptors and/or raw images to a centralized server for
downstream tasks, such as visual localization [38]. How-
ever, recent works [30, 37] show that high-quality images
may be recovered from the keypoint descriptors [30] or their
spatial information [37], raising serious concerns regarding
the potential leakage of private information via inversion at-
tacks.

This in turn inspires great interest in researching feature
obfuscation with a view to concealing the privacy critical
information in the image, mainly by perturbing either the
feature descriptors or their locations. One of the recent

Figure 1. Our novel privacy attacks and LDP-based privacy
method. Top row: image reconstruction attacks against adver-
sarial affine subspace embeddings [11] and our LDP-FEAT when
they have comparable performance in the downstream utility task.
Bottom row: overviews of the adversarial affine subspace embed-
dings algorithm [11] and our LDP-FEAT algorithm

works [11] represents a feature descriptor point as an affine
subspace passing through the original point, as well as a
number of other adversarial descriptors randomly sampled
from a database of descriptors, as shown in Fig. 1. These
adversarial descriptors serve as confounders to conceal the
raw descriptor. Another line of research [38, 39, 15, 36]
aims to conceal the location of 2D or 3D keypoints by lift-
ing the point to a line passing through that point, which pre-
vents a direct attack of the sort in [30, 37].

Despite their success, these works are primarily eval-
uated on the basis of empirical performance of a chosen
attacker, without rigorous understanding of the attacker-
independent, intrinsic privacy property. This causes hin-
drance for a method to claim privacy protection safely since
there is no theoretical guarantee to assure practical appli-
cations. For instance, [7] re-investigates the privacy claim
in [38] and designs a stronger attack to reveal that a sig-
nificant amount of scene geometry information in fact still
exists in the lifted line clouds, which can be leveraged to re-
cover sensitive image content. In this paper, we focus on the



feature descriptor and, similar in spirit to [7], we reveal the
privacy leakage in the affine subspace lifting [11]. Consid-
ering the drawbacks of the visual privacy-based method, we
present the first attempt of its kind to formulate the privacy
protection of image features through the lens of differential
privacy [44], which permits theoretic privacy characteriza-
tion, enjoys a guaranteed bound on privacy loss, and has
become a gold standard notion of privacy.

More specifically, we firstly introduce two novel attacks
against the adversarial affine subspace embedding [11],
namely the database attack and the clustering attack. In the
database attack, we assume that the database used to sam-
ple the adversarial descriptors is accessible to the attacker,
while in clustering attack we relax this assumption. At its
core, both attacks are established based upon the following
key assumption: the low-dimensional (e.g. 2,4,8) affine sub-
space very likely only intersects with the manifold of high-
dimensional (e.g. 128 for SIFT [23]) descriptors at those
points that were intentionally selected to construct the sub-
space in the beginning, i.e. the raw descriptor to be con-
cealed and the adversarial ones chosen from the database.
Tha main idea of our attacks lies in identifying these inter-
sections and further eliminating the adversarial ones. As
shown in Fig. 1, our attacks recover images of higher qual-
ity than the direct inversion attack shown in [11].

Next, we propose LDP-FEAT, a novel descriptor priva-
tization method that rests on the notion of local differential
privacy (LDP) [50], as illustrated in Fig. 1. In contrast to the
original centralized differential privacy which prevents pri-
vate information in the database from releasing to queries,
we instead aim to protect privacy in the query itself, i.e. the
image descriptors to be sent. We propose to formulate the
feature obfuscation by local differential privacy, with the
so-called ω-subset mechanism [44] – we effectively replace
each raw descriptor with a random set of descriptors un-
der predefined probability distribution that endows the rig-
orous and quantifiable differential privacy guarantee. Fur-
ther, our database and clustering attack are not applicable to
LDP-FEAT, and the direct inversion attack largely fails on
LDP-FEAT, as shown in Fig. 1. We demonstrate strong per-
formance in visual localization as a downstream task while
enjoying the advantageous privacy guarantee.

In summary, our contributions include:

• Two novel attacks on adversarial affine subspace em-
beddings [11] that enable (approximate) recovery of
the original feature descriptors.

• A novel method for image feature privatization that
rests on local differential privacy with favorable pri-
vacy guarantees.

• Advantageous privacy-utility trade-offs achieved via
empirical results to support practical applications.

2. Related Work
Feature descriptors. Feature descriptors extracted from
image key points are used for a range of computer vision
tasks such as 3D scene reconstruction [2], image retrieval
[28] and recognition [40]. Traditional methods for extract-
ing such descriptors were handcrafted based on direct pixel
sampling [6] or histograms of image gradients [23, 8]. More
recently, a growing number of methods rely on deep learn-
ing to extract the feature descriptors [26, 18, 3].
Inverting image features. The task of reconstructing im-
ages from features has been explored to understand what is
encoded by the features, as was done for SIFT by [46], HOG
features by [42] and bag-of-words by [21]. Recent work has
been primarily focused on inverting and interpreting CNN
features [52, 51, 24]. Dosovitskiy and Brox [10] proposed
encoder-decoder CNN architectures for inverting many dif-
ferent features and later incorporated adversarial training
with a perceptual loss [9], primarily focusing on dense fea-
tures. Pittaluga et al. [30] focus on inverting sparse SIFT
descriptors stored along with structure-from-motion point
clouds, recovering high-quality image content by training
feature inversion networks. Song et al. [37] further demon-
strate image recovery from just colored 3D point clouds
without the descriptors. The capability enabled by these
works raise significant privacy concerns, which further mo-
tivate research in privacy-preserving visual representations.
Visual privacy. McPherson et al. [25] and Vasiljevic et
al. [41] showed that deep models could defeat conventional
image obfuscation methods such as blurring and pixela-
tion. To defend against CNN-based attacks, adversarial op-
timization has been employed to learn CNN-resistant im-
age encodings for action recognition [47, 43], face attribute
recognition [48], place recognition [29], and more [5]. Re-
searchers also developed privacy-preserving representations
for image-based localization and mapping, which is tack-
led from two angles: (i) 2D and 3D keypoint obfuscation
[38, 39, 36, 16, 7, 15, 14] by concealing the position infor-
mation of keypoints, and (ii) image feature/descriptor ob-
fuscation [11, 27] by concealing the descriptor of keypoints.
The main idea for keypoint obfuscation lies in lifting a point
to a random line or plane, while descriptor obfuscation lifts
the descriptor to an affine subspace [11], or directly learns
attack-resistant descriptors by adversarial training [27]. De-
spite their empirical effectiveness, these methods do not
provide theoretical guarantee and characterization on the
privacy protection. In this paper, we first introduce two
novel attacks against [11] that reveal its privacy leakage,
and then propose a new feature privatization method that
provides formal guarantees via local differential privacy.
Differential privacy. In recent years, differential privacy
[12, 13] has become the gold standard for publication and
analysis of sensitive data. Most differential privacy research
is focused on the centralized setting [17], where raw user



data is aggregated by a trusted curator who then shares
the data to the public without releasing private information.
Note, the curator is assumed trusted, which, however, may
not be the case in practice. Instead, the local differential pri-
vacy [44, 50] provides a means for users to privatize their
data locally prior to sending it out; hence a trusted curator
is not required. Our work presents the first attempt to apply
local differential privacy for image feature privatization.

3. Preliminary: Affine Subspace Embedding
In order to preserve privacy in keypoint descriptors, Dus-

manu et al. [11] propose to “lifting” each descriptor to an
adversarial affine subspace before sharing to the curator.
Subspace lifting. Let d ∈ Rn denote a descriptor to be pri-
vatized. [11] proposes lifting d to an m-dimensional affine
subspace D ⊂ Rn satisfying d ∈ D, represented by a
translation vector d0 and m basis vectors {d1, ..., dm}, i.e.
D = d0 + span(d1, ...dm).
Selection of subspace. To ensure d not be easily recov-
erable, subspace D must intersect the manifold of real-
world descriptors at multiple points. [11] proposes that
half of the basis descriptors be randomly selected from a
database of real-world descriptors W , and the other half
be randomly generated via random sampling from a uni-
form distribution, i.e., setting d0 = d and di = ai − d for
i = {1, ..., m

2 }, where ai ∼ U{W} and di ∼ U([−1, 1])n

for i = {m
2 +1, ...,m} . This way, d and {a1, ..., am

2
} are

contained in D. [11] refers to this half-and-half approach as
hybrid lifting.
Re-parameterization. Evidently, the above representa-
tion of D directly exposes the descriptors, hence [11] re-
parameterizes D to prevent information leakage. First, to
avoid setting the translation vector as the raw descriptor d, it
randomly generates a new translation vector d0 = pD⊥(e0),
where pD⊥(e0) denotes the orthogonal projection of e0 onto
D, e0 ∼ U([−1, 1])n. Further, to prevent an attacker from
using the direction of the basis descriptors to infer the raw
descriptor d, a new set of basis descriptors di = pD⊥(ei) for
i = {1, ...,m}, where ei ∼ U([−1, 1])n, are randomly gen-
erated. Note that the above two steps only re-parameterize
D without changing its intrinsic property.
Matching. With the lifted privacy-preserving representa-
tion, [11] further proposes the use of point-to-subspace and
subspace-to-subspace distances for matching raw-to-lifted
and lifted-to-lifted descriptors, respectively.

4. Database and Clustering Inversion Attacks
In this section, we present two attacks against adversar-

ial lifting [11], namely the database attack and the clus-
tering attack. In database attack, we assume the attacker
has access to the database of real-world descriptors W from
which the adversarial descriptors were selected, whereas in

clustering attack, the attacker has no access to the database.
Both attacks are based on the following key empirical as-
sumption: a low-dimensional hybrid adversarial affine sub-
space D likely only intersects the high-dimensional descrip-
tor manifold at m

2 +1 points corresponding to the original
descriptor d and the adversarial descriptors {a1, ..., am

2
}

that were sampled from the database.

4.1. Database Attack

With the above assumption, if we can identify the m
2

subspace-manifold intersections corresponding to the ad-
versarial descriptors {a1, ..., am

2
}, the recovery of descrip-

tor d from subspace D is reduced to finding the one remain-
ing intersection. This is exactly the outline of our attack,
which we illustrate in Fig. 2(a) by a toy example with n=3
and m=2, i.e. subspace being a plane in R3.
Step 1: Compute distances to the database W . We start
by computing the distances dist(D,wi)=||wi−pD⊥(wi)||2
between subspace D and each descriptor in the database of
real-world descriptors wi∈W , and then sort the descriptors
in ascending order according to their respective distances.
Step 2: Recover adversarial descriptors exactly. Re-
call that the adversarial descriptors are selected from W ,
thus dist(D,wi)=0 holds exactly for i={1, ..., m

2 }, which
means the first m

2 descriptors from the sorted list immedi-
ately give our estimates {â1, ..., âm

2
} for {a1, ..., am

2
}.

Step 3: Estimate the concealed descriptor. Unlike the
adversarial descriptors, the database does not contain the
original descriptor d, but we may estimate it by its close
neighbors in the database. To this end, the next |V | descrip-
tors in the sorted list, V = {v1, ..., v|V |}, |V | << |W |, are
selected, containing the descriptors nearest to D for which
dist(D, vi) > 0. More specifically, these descriptors are
near to either the adversarial descriptors or the raw descrip-
tor, and we aim to further select a subset U ∈ V which
is close to the raw descriptor d but far from the adversar-
ial ones. U and V are both illustrated in Fig. 2(a). To se-
lect U , a score si = minj=1,...,m2

||âj − vi||2 is computed
for each vi in V . The descriptors with the highest scores,
u1, ..., u|U |, are used to estimate d via weighted average and
orthogonal projection:

d̂ = pD⊥

(
1

α

U∑
i=1

ui

dist(D,ui)

)
, (1)

where α =
∑U

i=1 dist(D,ui)
−1.

Remark. The intuition for why this attack works is that any
descriptors from database W that are near the subspace D
will likely cluster around either the original descriptor d or
one of the adversarial descriptors, as these are likely to be
the only points where the subspace intersects the manifold
of real-world descriptors. The effectiveness of this attack is
empirically validated in Sec. 6.1.



Figure 2. Illustration of (a) database attack and (b) clustering attack.

4.2. Clustering Attack

For this attack, we assume that the attacker does not have
access to the database of real-world descriptors W from
which adversarial descriptors ai=1,...,m2

are sampled, but
does have access to an additional set of adversarial affine
subspaces Q that were lifted with the same database W .
They could be obtained either from other descriptors in the
same image or from a set of c other images. The clustering
attack is illustrated in Fig. 2(b).
Step 1: Compute distance to public database. Extract de-
scriptors from a large set of public images and then cluster
them to generate a public database of real-world descriptors
Z to serve as a proxy for the private database W . Then,
compute the distances dist(D, zi) = ||zi − pD⊥(zi)||2 be-
tween subspace D and each descriptor zi ∈ Z.
Step 2: Select nearest neighbors. Select the |V | ≪ |Z|
descriptors nearest to subspace D, denoted vi=1,...,V . Note,
unlike in the database attack, we can’t identify ai=1,...,m2
exactly, as, in general, dist(D, zi) ̸= 0 for any i.
Step 3: Estimate candidate descriptors. Cluster V into
k = m

2 + 1 clusters and assign each vi a cluster label li ∈
{1, ..., m

2 +1}. Similar to Eq. (1), the center of each cluster
is computed separately as follows:

d̂i = pD⊥

(
1

αi

V∑
j=1

1(lj , i)
vi

dist(D, vi)

)
, (2)

where αi =
∑V

j=1 1(lj , i)dist(D, ji)
−1 and 1(x, y) = 1

when x = y and 0 otherwise. Note, these k descriptors rep-
resent (approximately) the intersections between subspace
D and the manifold of real-world descriptors. Thus, for our

attack, we assume that each descriptor d̂i is near to either
the original descriptor d or one of the adversarial descrip-
tors {a1, ..., am

2
}. Next, we leverage the auxiliary subspace

Q to estimate which d̂i is nearest to d.

Step 4: Estimate the concealed descriptor. Recall that
subspace D and the subspaces in Q were lifted using the
same database of private descriptors W . Thus, it’s likely
that a subset of subspaces Q′ ∈ Q were lifted using one or
more of the same adversarial descriptors as D, i.e. one of
ai, i={1, ..., m

2 }. We can identify this subset Q′ by noting
that each subspace in Q′

j ∈ Q′ intersects with D, i.e., by
selecting all Qj ∈ Q for which dist(D,Qj) = 0. Assum-
ing that Q is sufficiently large such that all ai’s were used to
lift at least one of the subspaces in Q′, this indicates that the
minimal point-to-subspace distance minj dist(ai, Q

′
j) =

0 for i={1, ..., m
2 }. On the other hand, since Q′ is selected

without any knowledge or specific treatments on d, it is ex-
pected that minj dist(d,Q

′
j) ≫ 0. In this discrepancy lies

the crux of our attack – while minj dist(âi, Q
′
j) > 0 for

our estimates of ai, âi, we expect that minj dist(d̂, Q
′
j) ≫

minj dist(âi, Q
′
j). Hence, we compute the score si for

each d̂i as si = minj dist(d̂i, Q
′
j) and the largest si yields

our estimate for d. We note that it is not impossible that
Q′ may contain a database descriptor that is close to d too,
but the probability of such a collision is low thanks to the
high dimension of descriptors and empirically, our attack
remains effective, as shown in Sec. 6.1.

Image reconstruction attack: With the recovered raw de-
scriptors by our database/clustering attack, one may per-
form an image inversion attack of the sort described in [30].



5. Our LDP-FEAT

The success of our inversion attacks motivates the need
for an image feature privatization method with rigorous pri-
vacy guarantee. We present the first solution towards this
goal with local differential privacy.

5.1. Preliminary: Local Differential Privacy

Unlike original differential privacy [12], the local dif-
ferential privacy (LDP) setting allows users to sanitize their
data locally before sending to a curator, so the curator needs
not be trusted. Here, we describe necessary definitions of
LDP and refer readers to [49] for detailed derivations.

Definition 1 (Local Differential Privacy) A randomized
mechanism M satisfies ϵ-local differential privacy (ϵ-LDP),
where ϵ ≥ 0, if and only if for any inputs x1 and x2,

∀y ∈ Range(M) :
Pr[M(x1) = y]

Pr[M(x2) = y]
≤ eϵ, (3)

where Range(M) denotes the set of all possible outputs
of M. Note that M maps the input to a probability distri-
bution rather than a single point. The ϵ controls the sim-
ilarity in the output, and is termed as the privacy budget
– a smaller ϵ indicates higher privacy protection, and vice
versa. To illustrate this, we note that according to the defi-
nition of LDP, Eq. (3) holds too if we swap x1 and x2, i.e.
Pr[M(x2)=y] ≤ eϵ Pr[M(x1)=y]. When ϵ=0, it follows
that Pr[M(x2)=y]=Pr[M(x1)=y]. This means x1 and x2

have an identical distribution after M perturbation, and are
indistinguishable from each other, hence yielding strongest
privacy protection. Conversely, a larger ϵ loosens the con-
straint in Eq. (3) and reduces privacy protection.
Selection of ϵ. While ϵ may be set as any value, it is com-
monly set within [0.01, 10], which was shown to ensure
good privacy protection in practice [19, 50].

Definition 2 (ω-Subset Mechanism) Denoting the data do-
main by K, for any input v ∈ K, randomly report a ω-sized
subset Z of K, i.e. Z⊂K and |Z|=ω, with probability

Pr(Z|v) =

{
ωeϵ

ωeϵ+|K|−ω/
(|K|

ω

)
, if v ∈ Z,

ω
ωeϵ+|K|−ω/

(|K|
ω

)
, if v /∈ Z.

(4)

The ω-Subset Mechanism (ω-SM) satisfies ϵ-LDP [45, 50].
It is important to note that the data domain K is required
to be a finite space, i.e. consisting of countably many el-
ements. In what follows, we formulate our image feature
perturbation as ω-SM for privacy guarantee.

5.2. Image Feature Matching with LDP

Overview Similarly to affine subspace lifting [11], we ap-
ply LDP to perturb feature descriptors before sending to
the curator, and the curator applies feature matching with

RANSAC-based geometric verification to enable down-
stream tasks despite the perturbation. We note the privacy-
utility trade-off here – a larger perturbation increases pri-
vacy protection but causes more significant challenges for
correct matching. This trade-off is controlled in our frame-
work by ϵ, which corresponds to a guaranteed bound of pri-
vacy loss. Next, we present in detail our LDP protocol for
image features by leveraging the ω-Subset Mechanism.
Naive Approach (LDP on the full descriptor space). A
straightforward approach is to apply ω-SM directly on the
descriptor space for obfuscation – define K as the set of
all possible descriptors and randomly report a subset of de-
scriptors, which contain the raw descriptor with some prob-
ability. This is applicable to image descriptors as they have
a finite domain size |K| as required by ω-SM: |K| = 28×128

for 128-dim uint8-based descriptors (e.g. SIFT), and |K| =
232×128 for 128-dim float32-based descriptors (e.g. Hard-
Net [26]). However, as we shall demonstrate in Sec. 6,
naively setting the output space to the full descriptor do-
main does not lead to a desirable privacy-utility trade-off.
This is caused by the domain size being too large; we will
explain this shortly after introducing the following domain
with a smaller size.
Our LDP-FEAT (LDP on a dictionary of descriptors).
We instead define the data domain K as a finite dictionary of
descriptors established from real-world image collections;
this dictionary serves as the database shared with all users.
More specifically, the database is created by extracting de-
scriptors from a large public database of images and then
performing k-means, as in [11]. Locally, each user enforces
differential privacy by the following steps.
Step 1: Replace each descriptor d that is to be sent to the
curator with its nearest neighbor d′ ∈ K.
Step 2: Then, d′ is replaced with a set of descriptors Z ⊂ K
of size m. We perform random sampling [45] to generate
the set Z that satisfies the probability distribution in Eq. (4):
first sample a Bernouilli scale variable u with

Pr(u = 1) =
meϵ

meϵ + |K| −m
; (5)

then randomly sample m− u descriptors Y from K−{d′}.
Step 3: if u = 1, Z = Y ∪ {d′} else Z = Y .
This approach satisfies ϵ-LDP (See supplementary for
proof). Note that the curator will receive multiple descrip-
tors per keypoint. The curator can then discover which, if
any, of the matches for a given keypoint are correct by per-
forming RANSAC-based geometric verification. Despite
the perturbation on the descriptor, good empirical perfor-
mance is still observed in downstream tasks, as shown in
Sec. 6.
Why domain size matters? Referring to Eq. (5), it is clear
that, with a fixed value of ϵ, an extremely large value of
|K| renders Pr(u = 1) extremely small – which severely



Figure 3. Inverting Adversarial Affine Subspace Embeddings.

limits the sending of raw descriptors to the server. This im-
plies a very low proportion of inlier correspondences, which
hinders utility. On the other hand, one may observe that in-
creasing ϵ in tandem with |K| may prevent Pr(u = 1) from
dropping, however, a larger ϵ quickly reduces the strength of
privacy protection; recall that ϵ typically is confined within
[0.01, 10] for practical usage [19, 50]. As such, too large a
domain size may cause poor privacy-utility trade-off. Sim-
ilarly, increasing m, the number of descriptors sent to the
server, prevents Pr(u = 1) from dropping at the cost of
reducing the proportion of inliers, which inhibits utility too.
These factors motivate our design choice to adopt a dictio-
nary of descriptors-based approach.
Theorem 1 (LDP-FEAT satisfies ϵ-LDP). Our LDP-FEAT
is not strictly a ω-SM per se, because of the preceding near-
est neighbor mapping – we first map the raw input d to its
nearest neighbor d′ in the database K, and then apply ω-SM
on top of d′. We prove in supplementary that LDP-FEAT
still satisfies ϵ-LDP.

Relation to affine subspace embeddings. While our
method is similar to [11] in that users obfuscate descriptors
by hiding them among a set of confounder descriptors ran-
domly sampled from a database, there are two critical differ-
ences. Firstly, in our method, the set of descriptors Z sent
by each user to the curator must be a subset of finite vocab-
ulary K; recall that the original descriptor d, if included, is
also replaced by its nearest neighbor in K. Hence, even if K
is exactly known by a malicious curator, he cannot use K to
perform a database attack of the sort described in Sec. 4.1,
and the same holds for the clustering attack when K is not
accessible. Secondly, thanks to careful design of the obfus-
cation protocol, our method enables rigorous accounting of
privacy leakage via local differential privacy, with a guar-
anteed bound of privacy leakage irrespective of the strength
of attacks.

6. Experimental Results

In this section, we first evaluate the efficacy of our
database and clustering attack, and then evaluate our LDP-

FEAT with respect to both utility and privacy.

6.1. Inversion Attacks on Adversarial Affine Sub-
space Embeddings

Evaluation setup. Our experimental setup is similar to
[11]. For all evaluations, we employ sub-hybrid adversar-
ial lifting of SIFT descriptors using an adversarial lifting
database that was generated by clustering 10 million lo-
cal features from 60,000 images from the Places365 dataset
[53] into 256,000 clusters using spherical k-means [4]. As
in [11], the 256,000 descriptors in the adversarial database
are split into 16 sub-databases. As described in Sec. 4, in
database attack the adversary has access to this exact ad-
versarial lifting database, whereas in clustering attack, the
adversary only has access to a public database of 128,00
descriptors, that was generated using the same process as
above, but from a different set of 60,000 images. Addition-
ally, as in [11], we train a U-Net [33] style CNN for image
reconstruction from descriptors on the MegaDepth dataset
[22] using the same architecture and loss as [30]. For all
reconstructions, we report the following image reconstruc-
tion quality metrics: mean absolute error (MAE), structural
similarity index measure (SSIM), and peak signal-to-noise
ratio (PSNR).

Image reconstruction attack. For this evaluation, a set
of descriptor-keypoint pairs is extracted from a source im-
age, transformed into a set of subspace-keypoint pairs us-
ing sub-hybrid adversarial lifting [11], and then sent to the
adversary. The goal of the adversary is to reconstruct the
source image from the received subspace-keypoint pairs. To
achieve this, we first employ either the database attack or
the cluster attack independently on each subspace-keypoint
pair to recover an estimate of the original descriptor. The
descriptors so obtained are then organized into a sparse fea-
ture map F ∈ R256×256×128 using the respective keypoint
locations; pixels that do not have any associated descriptor
are set to zero. Feature map F is then provided as input to
a pre-trained U-Net style reconstruction network to recover
the original source image.

Results. We evaluate the efficacy of the attacks on the



Figure 4. Direct Inversion Attack on LDP-FEAT. (|K| = 256k).

Attack Dim. MAE ↓ SSIM ↑ PSNR ↑

Nearest [11]

2 .1690 .3611 14.00
4 .1913 .3273 12.84
8 .1985 .2481 12.29

16 .1873 .2457 12.76

DIA [11]

2 .1194 .5005 16.35
4 .1468 .4190 14.79
8 .1635 .3676 14.01

16 .1761 .3496 13.43

Clustering (Ours)

2 .1087 .5919 17.30
4 .1142 .5652 16.51
8 .1254 .5160 15.83

16 .1424 .4122 14.73

Database (Ours)

2 .0947 .6566 18.26
4 .0950 .6543 18.27
8 .1000 .6385 17.89

16 .1063 .5882 17.47
Raw n/a .0913 .6878 18.59

Table 1. Inverting Adversarial Affine Subspace Embeddings.

10 holiday images from Flickr selected by [11]. For com-
parison, we also report the results of two other approaches
from [11]: Nearest and Direct inversion attack (DIA). For
Nearest, each adversarial subspace is replaced with its near-
est neighbor in the public database described above. For
DIA, the reconstruction network is trained to recover images
directly from the affine subspace parameters. As shown by
the example qualitative results in Fig. 3, our database attack
is able to recover high-quality image content. The cluster-
ing attack lags slightly behind, but still reveals a signifi-
cant amount of private information. We report quantitative
reconstruction quality in Tab. 1, for various lifting dimen-
sions. As a reference for upper bound, we also present re-
sults from Raw, where the original raw descriptor is input
to the reconstruction network. As can be seen, both of our
attacks are capable of recovering high-quality images from
the estimated original descriptor, even for an adversarial di-
mension of 16.

DB Size Privacy # Desc. Day
|K| ϵ m 0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Accuracy
Upper
Bound

21024 ∞ 1 84.1 91.7 96.4
1024k ∞ 1 79.7 89.9 94.9
512k ∞ 1 78.0 87.4 93.3
256k ∞ 1 76.8 86.3 91.6
128k ∞ 1 73.2 82.8 88.1

Impact of
Database

Size

21024 10 2 0.00 0.00 0.00
1024k 10 2 33.3 37.1 42.1
512k 10 2 37.4 43.2 48.1
256k 10 2 42.1 49.3 54.4
128k 10 2 39.4 45.4 50.2

Privacy
Guarantee

512k 16 4 76.1 85.0 90.4
512k 14 4 73.9 84.5 90.2
512k 12 4 69.4 77.9 84.6
512k 10 4 42.1 49.6 55.0
256k 16 2 75.4 85.3 90.2
256k 14 2 75.1 84.7 89.4
256k 12 2 69.5 78.4 84.1
256k 10 2 42.1 49.3 54.4

Impact of
Subset

Size

256k 10 1 34.6 39.7 44.7
256k 10 2 42.1 49.3 54.4
256k 10 4 42.1 49.0 55.1
256k 10 8 39.1 46.4 51.8
256k 10 16 32.8 38.0 44.3

Table 2. Aachen Day-Night Localization Challenge.

6.2. Applying LDP-FEAT to Visual Localization

As in [11], we evaluate LDP-FEAT on the task of visual
localization on a pre-built map from the Aachen Day-Night
long-term visual localization challenge [1]. Following [11],
we privatize descriptors extracted from the query images,
but not the reference images, to simulate an application aim-
ing to protect the user privacy in an image-based localiza-
tion service, such as Google Visual Positioning System [31]
or Microsoft Azure Spatial Anchors [20].

Preliminaries. We generate the pre-built map by extracting
SIFT descriptors from the reference images and triangulat-
ing the database model from the camera poses and intrin-
sics provided by [1]. Next, we privatize the raw descriptors
of all query images using LDP-FEAT. For matching, we
retrieve the top 20 reference images for each query image



Ablation Variable
Aachen Day

0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Matching
Algorithm

voc-match 42.1 49.3 54.4
mutual-nn 18.3 22.0 26.1

Public
Database

Aachen Ref. 42.1 49.3 54.4
Places365 19.3 21.8 24.8

RANSAC
Iterations

10M 42.1 49.3 54.4
1M 40.2 45.6 51.3

100k 38.2 44.7 49.9
10k 33.0 38.7 44.5

Table 3. Ablation Study. (|K|=256k, ϵ=10, m=2).

using ApGem [32] and match the privatized descriptors to
the reference descriptors. Finally, we obtain poses for the
query images using the COLMAP [34] image registrator
with fixed intrinsics. The poses are then submitted to the
long-term visual localization benchmark. Below, we ana-
lyze the behavior of LDP-FEAT with the evaluation metric
being the percentages of localized query images for the day
queries for different thresholds in the translation and rota-
tion error, as shown in Tab. 2.

Localization accuracy upper bound. For the first five
rows in Tab. 2, we set m=1 and ϵ=∞, meaning that LDP-
FEAT simply returns the nearest neighbor d′. Thus, these
accuracies represent the upper bound performance for each
database size. As expected, the localization accuracy de-
creases as the database size decreases, due to the quantiza-
tion step in LDP-FEAT that replaces a raw descriptor with
its nearest neighbor in K. Note, |K|=21024 corresponds to
our naive LDP method described in Sec. 5.2 that sets K as
the set of all possible descriptors.

Impact of database size. Recall that LDP-FEAT privatizes
a raw descriptor d by returning a random subset Z⊂K of
size m. Recall further that for a fixed ϵ, the probability that
d′∈Z , where d′ denotes the nearest neighbor of d in K, is
inversely related to the size of the database K. This creates
an inherent privacy-utility tradeoff, as a larger database in-
creases the resolution of the quantization step, but decreases
the probability that d′∈Z . To illustrate this, consider the
following examples: (1) In the extreme case of |K|=m, i.e.
always outputting the entire database K for any input, the
privacy is fully preserved since none of the input is distin-
guishable in their output, but there is not any utility for fea-
ture matching; (2) In the case of |K| being extremely large,
Pr(d′∈Z) = Pr(u=1) is nearly zero, meaning the nearest
neighbor of the raw descriptor may never be included in the
output subset Z , which, evidently, leads to poor utility. In
Tab. 2, we empirically investigate the impact of the database
size on this tradeoff by fixing ϵ=10 and m=2, and varying
|K|. Interestingly, we find that |K|=256k is the best oper-
ating point, which demonstrates the need to find the right
quantization level.

DB Size Privacy # Desc. MAE SSIM PSNR
|K| ϵ m (↓) (↑) (↑)

256k 16 1 .1069 .6248 17.35
256k 14 1 .1137 .5923 16.90
256k 12 1 .1317 .4668 15.77
256k 10 1 .1701 .3651 13.72
256k 16 2 .1173 .5582 16.50
256k 14 2 .1208 .5417 16.31
256k 12 2 .1366 .4655 15.44
256k 10 2 .1660 .3676 13.84
256k 16 4 .1261 .4976 15.94
256k 14 4 .1322 .4868 15.47
256k 12 4 .1438 .4511 14.93
256k 10 4 .1758 .3666 13.48
512k 16 4 .1226 .4994 16.02
512k 14 4 .1254 .4866 15.95
512k 12 4 .1511 .4188 14.55
512k 10 4 .1685 .3647 13.93

Table 4. Direct Inversion Attack on LDP-FEAT.

Privacy guarantee. The value of ϵ does not indicate the
strength of privacy protection, but rather a bound on the pri-
vacy leakage. As discussed above, the actual strength of the
privacy protection of LDP-FEAT depends not just on ϵ, but
also the database K and the subset size m. The unique ad-
vantage of LDP-FEAT compared to existing visual privacy
methods (e.g. [11]) is that LDP-FEAT provides a privacy
guarantee. We analyze in Tab. 2 the impact of varying ϵ on
localization accuracy for two different operating points: (i)
(|K| = 512k,m = 4) and (ii) (|K| = 256k,m = 2). First,
observe the decreasing accuracy with decreasing ϵ. Interest-
ingly, we further find that the two operating points achieve
almost identical accuracy for the same ϵ value. A likely ex-
planation for this is that the probability that p(d′ ∈ Z) is
equal for both operating points, so the improved resolution
of the operating point with larger |K| is negated by having
to assign each keypoint m = 4 instead of m = 2 descrip-
tors, in order to preserve the same ϵ value. Note, for a fixed
value of ϵ, we can search the parameters of K and m for
best utility while being assured that the privacy leakage is
always bounded.

Impact of Subset Size. In the last five rows of Tab. 2, we
investigate the impact of varying the subset size of LDP-
FEAT. Empirically, we find that for a fixed database size
|K| = 256k and ϵ = 10, the subset size m = 2 and m = 4
achieve the best localization accuracy. Again, this search is
guarded by the privacy guarantee of LDP-FEAT.

Ablation Study. We perform additional ablation experi-
ments in Tab. 3, where we fix |K|=256k, ϵ=10 and m = 2.
In the first two rows, we examine the impact of the matching
criteria on localization accuracy and find that vocabulary-
based matching [28] improves localization performance



dramatically compared to mutual nearest neighbor. Next,
we vary the source of the public database and find that ex-
tracting the descriptors from the Aachen reference images
results in much better performance (more discussions be-
low.). Finally, we report localization accuracy when vary-
ing the number of RANSAC iterations. As expected, more
RANSAC iterations leads to better performance.

Impact of database content. Following the above discus-
sion, we further note that the database content in K also has
an impact on the privacy-utility trade-off through the quan-
tization step. Specifically, if the database descriptors are all
significantly distinct from the input descriptor, it leads to
large quantization errors as a result, indicating none of the
database descriptors in the output subset Z can well repre-
sent the input descriptor. This certainly yields strong pri-
vacy but leads to poor utility. In Tab. 3, we have compared
the performance of using Aachen reference images to build
the database versus using the external Places365 dataset.
The former achieves significantly superior performance due
to its higher resemblance to the query images. Another
example scenario where the database content plays a role
lies in the Aachen night-time localization challenge. As we
show in the supplementary, given night-time query images
and the database K built solely from day-time images, the
localization accuracy is degraded despite the strong privacy.

6.3. Direct Inversion Attack on LDP-FEAT.

We start by noting that our database and clustering at-
tack are not applicable to LDP-FEAT since all descriptors
sent are samples from the database. Instead, we evaluate
the performance from a direct inversion attack. To achieve
this, we stack all m descriptors sent by the user and create
the sparse feature map F ∈ R256×256×(128×m), similarly
to what is described in Sec. 6.1. F is then fed as input
to a U-Net style neural network trained to reconstruct the
source image from such a feature map. As shown qualita-
tively in Fig. 4 with different combinations of ϵ and m, the
attack generally fails to recover high-quality image content
that reveals privacy. We further report quantitative results
in Tab. 4. One observes that the image reconstruction qual-
ity is, in general, lower than that for the affine embeddings
shown in Tab. 1, indicating the privacy protection of LDP-
FEAT.

7. Conclusion

In this paper, we propose two novel attacks to reveal the
privacy leakage underneath the adversarial affine subspace
embeddings [11]. Following this, we further propose LDP-
FEAT, a new and more rigorous privacy-preserving protocol
that formulates image feature matching under the umbrella
of local differential privacy. This makes our method the first
of its kind that enjoys the theoretical privacy guarantees of-

fered by differential privacy, all the while achieving strong
utility in downstream tasks, such as visual localization. We
envision that our work will inspire more research efforts on
specialized LDP protocols for image matching and other vi-
sion tasks.
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LDP-FEAT: Image Features with Local Differential Privacy
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The supplementary material contains (1) a proof that
LDP-FEAT satisfies ϵ-LDP, (2) additional experimental re-
sults on Aachen night-time localization and Structure-from-
Motion (SfM), and (3) an analysis of the paper’s assump-
tions.

S1. Local Differential Privacy of LDP-FEAT

Here, we prove that LDP-FEAT satisfies ϵ-LDP. For clar-
ity, we first prove that ω-SM satisfy ω-LDP and the proof
for LDP-FEAT follows very similarly.

S1.1. Theorem 1 (ω-Subset satisfies ϵ-LDP)

For any inputs v1 and v2, and their output Z1 and
Z2 returned by ω-SM, there are four possible scenar-
ios {v1∈Z1, v2∈Z2}, {v1 /∈Z1, v2∈Z2}, {v1∈Z1, v2 /∈Z2},
{v1 /∈Z1, v2 /∈Z2}, each with different probability distribu-
tions. Below, we show that the probability inequality re-
quired by ϵ-LDP, i.e. Eq. (3) of the main paper, is satisfied
for all the four scenarios.
1) {v1∈Z1, v2∈Z2}. In this case,

Pr(Z1|v1) =
ωeϵ

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

Pr(Z2|v2) =
ωeϵ

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

(S1)

meaning that Pr(Z1|v1)=Pr(Z2|v2), hence Pr(Z1|v1) ≤
eϵ Pr(Z2|v2) holds.
2) {v1 /∈Z1, v2∈Z2}. In this case,

Pr(Z1|v1) =
ω

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

Pr(Z2|v2) =
ωeϵ

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

(S2)

meaning that Pr(Z1|v1) = e−ϵ Pr(Z2|v2), hence
Pr(Z1|v1) ≤ eϵ Pr(Z2|v2) holds since ϵ > 0.

3) {v1∈Z1, v2 /∈Z2}. In this case,

Pr(Z1|v1) =
ωeϵ

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

Pr(Z2|v2) =
ω

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

(S3)

meaning that Pr(Z1|v1) = eϵ Pr(Z2|v2), hence
Pr(Z1|v1) ≤ eϵ Pr(Z2|v2) holds.
4) {v1 /∈Z1, v2 /∈Z2}. In this cases,

Pr(Z1|v1) =
ω

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

Pr(Z2|v2) =
ω

ωeϵ + |K| − ω
/

(
|K|
ω

)
,

(S4)

meaning that Pr(Z1|v1)=Pr(Z2|v2), hence Pr(Z1|v1) ≤
eϵ Pr(Z2|v2) holds.
This concludes our proof.

S1.2. Theorem 2 (LDP-FEAT satisfies ϵ-LDP)

For any input descriptor d, the output set Z are obtained
by: first map d to an element (let us denote it as d̄) in the
database K, and then d̄ is mapped to the random set Z .
Hence,

Pr(Z|d) =
∑
d̄∈K

Pr(Z, d̄|d)

=
∑
d̄∈K

Pr(Z|d̄) Pr(d̄|d).
(S5)

Since the mapping from d to d̄ is deterministic – it is
mapped to the nearest neighbor d′ in the database, we have

Pr(d̄|d) =

{
1, if d̄ = d,

0, if d̄ ̸= d.
(S6)

Plugging Eq. (S6) into Eq. (S5) yields

Pr(Z|d) = Pr(Z|d′) (S7)



DB Size Privacy # Desc. Day Night
|K| ϵ m 0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦ 0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Accuracy
Upper
Bound

128k ∞ 1 73.2 82.8 88.1 24.6 28.8 33.5
256k ∞ 1 76.8 86.3 91.6 28.8 34.6 42.4
512k ∞ 1 78.0 87.4 93.3 33.5 40.8 51.3

1024k ∞ 1 79.7 89.9 94.9 36.1 42.4 51.8
21024 ∞ 1 84.1 91.7 96.4 50.3 61.8 73.8

Impact of
Database

Size

128k 10 2 39.4 45.4 50.2 1.60 2.10 3.70
256k 10 2 42.1 49.3 54.4 3.70 5.20 6.30
512k 10 2 37.4 43.2 48.1 2.10 3.70 4.70

1024k 10 2 33.3 37.1 42.1 2.10 3.70 3.70
21024 10 2 0.00 0.00 0.00 0.00 0.00 0.00

Privacy
Guarantee

256k 10 2 42.1 49.3 54.4 3.70 5.20 6.30
256k 12 2 69.5 78.4 84.1 16.8 19.4 23.6
256k 14 2 75.1 84.7 89.4 23.0 27.7 33.0
256k 16 2 75.4 85.3 90.2 23.0 27.2 31.9
512k 10 4 42.1 49.6 55.0 5.20 7.90 9.90
512k 12 4 69.4 77.9 84.6 19.4 22.5 26.2
512k 14 4 73.9 84.5 90.2 23.6 29.8 34.6
512k 16 4 76.1 85.0 90.4 24.6 29.8 34.0

Impact of
Subset

Size

256k 10 1 34.6 39.7 44.7 2.60 3.70 4.70
256k 10 2 42.1 49.3 54.4 3.70 5.20 6.30
256k 10 4 42.1 49.0 55.1 3.70 4.70 5.20
256k 10 8 39.1 46.4 51.8 4.70 5.80 6.30
256k 10 16 32.8 38.0 44.3 2.60 2.60 3.70

Table S1. Aachen Day-Night Localization Challenge.

For any input descriptor d1 and d2, their nearest neigh-
bor d′1 and d′2, and their output Z1 and Z2, there are four
possible scenarios {d′1∈Z1, d

′
2∈Z2}, {d′1 /∈Z1, d

′
2∈Z2},

{d′1∈Z1, d
′
2 /∈Z2}, {d′1 /∈Z1, d

′
2 /∈Z2}, each with different

probability distributions. Since Z1 and Z2 are sampled us-
ing the ω-SM, we have shown above that Pr(Z1|d′1) ≤
eϵPr(Z2|d′2) holds for all the four scenarios, and given
Eq. (S7), we have Pr(Z1|d1) ≤ eϵPr(Z2|d2). This means
that LDP-FEAT satisfies ϵ-LDP.

S2. Additional Results

S2.1. Aachen Night Localization

Similarly to the Tab.2 of the main paper, we report in
Tab. S1 the localization accuracy for night-time queries in
the Aachen Day-Night localization challenge. Overall, we
observe a degradation of performance compared to the day-
time queries. This is mainly because our database K was
built from the Aachen reference images which contain day-
time images only. As aforementioned, this causes a large
quantization error ∆d in LDP-FEAT, which certainly en-

hances privacy protection but compromises the utility. We
leave the pursuit of a better privacy-utility trade-off for
night-time localization as a future work.

S2.2. Structure-from-Motion

We further demonstrate the utility of LDP-FEAT on
Structure-from-Motion, as shown in Fig. S1. We adopt
COLMAP [34] for SfM by customizing its feature extrac-
tion and matching using LDP-FEAT. As an indicator for
SfM performance, we report the number of registered im-
ages, the number of reconstructed sparse 3D points, the av-
erage keypoint track length, and the average reprojection
error.

We report results on the “South Building” and “Foun-
tain” scene from the 3D reconstruction benchmark [35]. We
first report the results for (|K| = 21024, ϵ = ∞, m = 1).
This corresponds to the oracle setting where only the raw
descriptor is sent without any privacy protection, and which
serves a performance upper bound. We then use a dictionary
with 512k descriptors, i.e. (|K| = 512k, ϵ = ∞, m = 1)
where the quantization step, i.e. mapping the raw descriptor



Scene
Dict. Size Privacy # Desc. Reg. Sparse Track Reproj.

|K| ϵ m Images Points Length Error

South
Building

21024 ∞ 1 128 110,714 5.66 1.29
512k ∞ 1 128 62,194 4.85 1.12
512k 10 4 88 8,668 3.56 0.85
512k 10 8 75 10,554 3.66 1.05
512k 10 16 123 25,451 3.62 0.89
512k 10 32 123 26,760 3.52 0.94
512k 10 64 124 21,596 3.31 1.28

Fountain

21024 ∞ 1 11 15,332 4.42 2.82
512k ∞ 1 11 8,612 3.80 2.39
512k 10 4 11 983 2.86 1.26
512k 10 8 11 1,827 2.98 1.35
512k 10 16 11 2,598 3.03 1.50
512k 10 32 11 3,078 3.02 1.52
512k 10 64 11 3,242 2.89 1.41

Figure S1. Local Feature Evaluation Benchmark. Structure-from-Motion results using LDP-FEAT with different configurations.

Dim Success Rate (%)
m N=50 N=20 N=10 N=5
4 93.89 95.60 96.61 97.46

16 87.27 90.54 92.73 94.38

Table S2. Intersecting Adversarial Subspaces.

d to its nearest neighbor d′, introduces a degree of privacy
protection and thus degrades the performance accordingly.
Next, we fix |K| = 512k and ϵ = 10, while increasing m
from 4 to 64. The performance varies, and we observe that
m=32 yields the best performance. Overall, one observes
that good SfM results are obtained from LDP-FEAT under
different settings; in particular, most of the cameras are suc-
cessfully registered, despite the reconstructed points being
sparser. We demonstrate the qualitative reconstruction re-
sults in Fig. S1.

S3. Analysis of Assumptions

S3.1. Intersecting Adversarial Subspaces

As discussed in the paper, our proposed Database and
Clustering attacks are based on the following key empiri-
cal assumption: a low-dimensional hybrid adversarial affine
subspace D likely only intersects the high-dimensional de-
scriptor manifold at m

2 +1 points corresponding to the origi-
nal descriptor d and the adversarial descriptors {a1, ..., am

2
}

that were sampled from the database. Here, we generate
subspaces for 100K descriptors and report how often our
assumption holds, i.e., for each subspace, we select the top
N database descriptors closest to the subspace, and match

Dim=2 Dim=4 Dim=8 Dim=16
97.42% 94.30% 85.46% 73.03%

Table S3. Clustering Attack Collisions.

them to the m
2 +1 descriptors forming the subspace. Us-

ing the standard ratio test (>0.8) we report the percentage
of successful matches in Tab. S2. The high success rates
empirically validate our assumption regarding the rareness
of intersections beyond the m

2 +1 forming descriptors. We
also note that our assumption is implied by the success of
feature matching in [11].

S3.2. Clustering Attack Collisions

For our clustering attack, we assume that the attacker
does not have access to the database of real-world descrip-
tors W from which adversarial descriptors ai=1,...,m2

for
subspace D are sampled, but does have access to an addi-
tional set of adversarial affine subspaces Q that were lifted
with the same database W . We can identify the subset of
subspaces Q′ ∈ Q that were lifted using one or more of
the same adversarial descriptors as D, by noting that each
subspace in Q′

j ∈ Q′ intersects with D. Assuming that
Q is sufficiently large such that all ai’s were used to lift at
least one of the subspaces in Q′, this indicates that the min-
imal point-to-subspace distance minj dist(ai, Q

′
j) = 0 for

i={1, ..., m
2 }. On the other hand, since Q′ is selected with-

out any knowledge or specific treatments on d, it is expected
that minj dist(d,Q

′
j) ≫ 0. In this discrepancy lies the

crux of our attack – while minj dist(âi, Q
′
j) > 0 for our

estimates of ai, âi, we expect that minj dist(d̂, Q
′
j) ≫



Figure S2. Inlier Attack.

minj dist(âi, Q
′
j). Hence, we compute the score si for

each d̂i as si = minj dist(d̂i, Q
′
j) and the largest si yields

our estimate for d. We note that it is not impossible that
Q′ may contain a database descriptor that is close to d too,
but the probability of such a collision is low thanks to the
high dimension of descriptors. In Tab. S3, we validate this
assumption by lifting all the descriptors of our 10 test im-
ages to adversarial subspaces and reporting the percentage
of them that have no collisions in our attack.

S3.3. Sensitivity of Inlier Content

Since inlier correspondences emerge from RANSAC in
the geometric tasks, one natural attack one may think of is
leveraging these inlier features to reveal the image content;
we term this as inlier attack. We note that this attack is gen-
erally applicable to all privacy protocols that are capable
of geometric utility tasks where RANSAC returns inliers,
e.g. ours and [11]. However, RANSAC inliers typically
consist of only static background scenes without dynamic
foreground (e.g. faces). We clarify that the privacy protec-
tion mainly targets at the foreground in both our and [11]’s
problem setup, and thus the inlier attack was not a concern.
Nonetheless, we perform inlier attack here and show exam-
ple result in S2. As expected, the attack works only for the
background bridge, but not for the foreground faces.


