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Abstract

In the supplementary, we provide further details about
ALAN architecture and anchor selection. Additionally, we
show quantitative and qualitative comparisons for proposed
DAC and ALAN framework.

1. Further Details for ALAN
1.1. Network Architecture

In this section, we provide more details about our network
architecture.

Centerline Encoder: It takes lane anchor for each indi-
vidual agent in the form of p×2 points and reshapes them as
2p× 1× 1 vector. We then pass it through a series of 1× 1
convolutions with 256,128,64 output filters.

Past Trajectory Encoder: It contains an embedding layer
and an LSTM encoder. The embedding layer takes a 5 dimen-
sional vector containing Xt

i , N
t
i,k for every timestep along

with a boolean mask indicating if trajectory information is
available for the timestep and produces an embedded vector
of 16 dimensions. Then the embedded past trajectory is fed
through a LSTM of hidden size 64 to produce a past state
vector of 64 dimensions.

Multi-Agent Convolutional Encoder: The past state vec-
tor (64 dim) and embedded centerline vector (64 dim) are
concatenated to form a 128 dimensional vector for every
agent. The agent specific information is then encoded at its
respective location to form a H ×W × 128 vector. This
along with the BEV map of size H ×W × 3 is provided
as input to this module. The module uses a ResNet-18[6]
encoder backbone where we replace the first layer with a
convolutions of 3× 3 kernel size and stride 2. We then pass
the features through ResNet[6] base layers from 1 to 7.

Hypercolumn Trajectory Decoder: First we extract hy-
percolumn descriptors for every agent based on the agent’s

location in the BEV map. Specifically, we extract hypercol-
umn features from layers 0,2,4,5,6,7 and pass them through
a series of 1 × 1 convolutions containing 2048,1024,1024
filters. Finally, a 1 × 1 output convolution then produces
primary and auxiliary outputs.

Ranking Module: It takes in 1024 features vectors from
the Hypercolumn Trajectory Decoder before the final output
layer and passes them through a 1×1 convolution with 1024
filters and finally produces M trajectory scores as output.

1.2. Learning

Our input BEV map is of size 256 × 256 dimensions
at a resolution of 0.5m per pixel. The models are trained
with Adam[8] optimizer with an initial learning rate of 1e-4
and batch size 8. We use exponential lr decay with gamma
value 0.95 called after every epoch. The hypotheses are split
in case of DAC after every 2000 iterations and the models
are trained for 150k iterations (approximately 38 epochs).
The ALAN is implemented in pytorch[11] and trained on
NVIDIA RTX 2080Ti GPU.

1.3. Nuscenes Dataset

Approximately 2.5% of validation set contains bad an-
chors, such as some due to either unconnected lanes or places
without lane centerlines. In such cases, for the benchmark
evaluation we use the nearest lane centerline that is closest
to the trajectory. Further, we evaluate our method by ap-
proximately removing examples which have average normal
distance of the past trajectory to nearest lane greater than a
threshold distance (3 meters) and compare it with baselines
[12, 3]. As seen from Table 1 our proposed ALAN provides
even better performance when bad anchors are removed.

2. Anchor Retrieval
Nuscenes[1] provides HD map data containing lane cen-

terline information represented a sequence of points. We
follow steps similar to [7] in order to retrieve plausible lanes.

Identify Closest Lanes Given a position of the vehicle
in city coordinates we first identify a set of closest lane
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Table 1: Nuscenes Evaluations. Removing bad anchors based on normal distance to lane (threshold = 3m). Total validation
examples after removing = 8823.

Model mADE 1 mADE 5 mADE 10 Miss 2 5 Miss 2 10 mFDE 1 mFDE 5 mFDE 10 OffRoadRate

CoverNet[12] 6.81 3.09 2.39 87 76 13.9 5.92 4.27 0.13
MTP [3] 4.14 2.80 1.74 70 53 9.91 6.42 3.71 0.11

ALAN (top-M) 4.49 1.79 1.14 58 47 9.76 3.41 1.76 0.003
ALAN (Oracle) 4.48 1.70 1.08 57 46 9.72 3.16 1.60 0.004
ALAN (BofA) 4.54 1.69 1.03 55 43 9.84 3.20 1.56 0.006

segments to the vehicle within a radius d.
Retrieve Candidate Anchors We identify plausible lane

anchors by traversing through successor and predecessor
lanes till a threshold distance. Several connected lane seg-
ments from an anchor.

Prune Duplicate Anchors We then filter candidate an-
chors by removing lanes, which are a subset of others.

Heuristic based Pruning Based on the vehicle’s veloc-
ity we identify a look ahead point on the lane for a future
timestep T and remove duplicate anchors which pass through
the same point. This is done to further reduce the number of
plausible anchors and remove duplicates which only diverge
after a sufficient distance from the vehicle’s position.

Distance Along Lane Score Then we rank the candidates
anchors based on distance travelled along the lane by the
vehicle. First, we calculate the corresponding nt coordinates
for the trajectory along every plausible anchor. The score is
determined as the absolute sum of normal values for every
timestep in the trajectory. Anchors are then ranked based on
their scores.

Centerline Yaw Score Further, we rank candidate an-
chors which have same distance along lane score based on
centerline yaw score. It is calculated as the absolute differ-
ence between yaw angle of the vehicle and lane yaw angle
at a point closest to the vehicle.

Learning Every plausible anchor divided into p equally
spaced points, in our case p = 150. For training, we use
the oracle anchor where oracle is determined based on the
trajectory information from 1...T . During inference, for
ALAN (top-M) we rank trajectories using observed locations
from 1...tobs.

3. Additional Results
In this section, we show some additional quantitative and

qualitative comparisons for the proposed DAC and ALAN
framework.

3.1. DAC Qualitative Comparisons

We evaluate our proposed DAC through additional sim-
ulations including modes with non-uniform probabilities
and compare it with previous WTA objectives [9, 13, 10]
(shown in Figure 1). As observed, WTA[9] leaves many

Method (mIoU) DeepLabV3 DeepLabV3 + WTA DeepLabV3 + DAC
Pascal2012 (val set) 76.83 82.14 83.44

Table 2: mIoU score for DeepLabV3[2] on Pascal2012[5]
dataset with no multimodality, WTA(k=3) and DAC on
Pascal[5] val set.

hypothesis untrained. While RWTA[13] solves the conver-
gence problem in WTA it brings non-winner hypothesis to
an equilibrium position due to residual constraints. Fur-
ther, EWTA[10] captures the data distribution better but still
suffers from the problem of spurious modes as hypothesis
can be attracted towards many ground truths and finally left
untrained as only top k hypotheses are penalized. Finally,
proposed DAC captures the data distribution as good or bet-
ter even when modes have such low likelihoods and solves
the problem of spurious modes by making use of all hy-
potheses. In every stage, DAC reaches close to a Centroidal
Voronoi Tessellation[4] with effective number of outputs
increasing at every stage, leading to hypotheses capturing
some probability mass and thus avoiding the spurious mode
problem.

3.2. DAC on Other Networks

Further, we implement our proposed DAC on other popu-
lar networks such as DeepLabV3[2] where we train and test
on PascalVOC2012[5] dataset for semantic segmentation
task and calculate the IoU scores for 21 classes. Our mIoU
scores across all clases is reported in Table 2. Here, we
modify the final layer of DeepLabV3[2] to contain multiple
segmentation heads in order to implement DAC and WTA.

3.3. ALAN Qualitative Comparisons

Figure 2 shows qualitative comparison of ALAN with
other baselines [12, 3].
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Figure 1: Additional toy examples including modes with non-uniform likelihoods comparing DAC with other WTA family of
objectives. The first two rows shows a mixture distribution with high variance and second two rows show a well separated
gaussian mixture model. Other examples contain modes with π = {5, 7.5, 12.5, 50}%. As seen from Row 3, WTA captures
the distribution poorly by either leaving many hypotheses untrained or by introducing spurious modes that do not correspond
to the data distribution. On the other hand, every hypothesis in proposed DAC captures some part of the data as seen from its
voronoi space.
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(a) MTP[3] (b) CoverNet[12] Epsilon=8 (c) CoverNet[12] Epsilon=2 (d) ALAN (Ours)

Figure 2: Shows comparison of ALAN predictions with baselines. The past trajectory is in brown and the GT is shown in black. The
endpoint of GT is shown as a green dot. The predicted trajectories are shown in green and their endpoints as triangles. The final trajectories
are chosen based on the predicted IOC score of each trajectory. As observed ALAN predictions are more semantically aligned in comparison.
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