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Abstract

Trajectory prediction is a safety-critical tool for au-
tonomous vehicles to plan and execute actions. Our work
addresses two key challenges in trajectory prediction, learn-
ing multimodal outputs, and better predictions by imposing
constraints using driving knowledge. Recent methods have
achieved strong performances using Multi-Choice Learning
objectives like winner-takes-all (WTA) or best-of-many. But
the impact of those methods in learning diverse hypotheses is
under-studied as such objectives highly depend on their ini-
tialization for diversity. As our first contribution, we propose
a novel Divide-And-Conquer (DAC) approach that acts as
a better initialization technique to WTA objective, resulting
in diverse outputs without any spurious modes. Our sec-
ond contribution is a novel trajectory prediction framework
called ALAN that uses existing lane centerlines as anchors
to provide trajectories constrained to the input lanes. Our
framework provides multi-agent trajectory outputs in a for-
ward pass by capturing interactions through hypercolumn
descriptors and incorporating scene information in the form
of rasterized images and per-agent lane anchors. Experi-
ments on synthetic and real data show that the proposed
DAC captures the data distribution better compare to other
WTA family of objectives. Further, we show that our ALAN
approach provides on par or better performance with SOTA
methods evaluated on Nuscenes urban driving benchmark.

1. Introduction

Prediction of diverse multimodal behaviors is a critical
need to proactively make safe decisions for autonomous ve-
hicles. A major challenge lies in predicting not only the
most dominant modes but also accounting for the less dom-
inant ones that might arise sporadically. Hence, there is
need for models that can disentangle the plausible output
space and provide diverse futures for any given number of
samples. Further, a vast majority of actors execute socially
acceptable maneuvers that adhere with the underlying scene
structure. Predicting socially non-viable outputs can lead to

Figure 1: Depicts trajectory prediction problem in an inter-
section scenario with possible lane anchors for agents shown
as coloured dashed lines.

unsafe planning decisions with some more dangerous than
the others [7]. For example, a method that provides close
enough predictions that does not follow road semantics is
more dangerous compared to similar performing method that
adheres to the scene structure.

Traditionally, generative models have been widely
adapted to capture the uncertainties related to trajectory pre-
diction problems [25, 22, 37, 21, 39]. However, generative
methods may suffer from mode collapse issues, which re-
duces their applicability for safety critical applications such
as self-driving cars. Recent methods [32, 28] use Multi-
Choice Learning objectives [26] like winner-takes-all (WTA)
but suffer from instability associated with network initializa-
tion [30, 34]. As a first contribution, we propose a Divide
and Conquer (DAC) approach that provides a better initial-
ization to the WTA objective. Our method solves issues
related to spurious modes where some hypotheses are either
untrained in the training process, or reach equilibrium po-
sitions that do not represent any part of the data. We show
that the proposed DAC captures the data distribution better
on both real and synthetic scenes with multi-modal ground
truth, compared to baseline WTA objectives [30, 34].
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Further, trajectory prediction methods incorporate driving
knowledge using scene context either in the form of raster-
ized images [25, 37, 39, 32, 33, 8] or by exploiting HD map
data structure [28, 15] as inputs. Usually, this information
is represented as a feature given as input to the network and
does not guarantee strong semantic coupling. Our second
contribution addresses this by proposing ALAN, a novel
trajectory prediction framework that uses lane centerlines
as anchors to predict trajectories (Figure 1). Our outputs
provide accurate predictions with strong semantic alignment
demonstrated by FDE and OffRoadRate values and validated
using our qualitative visualizations.

Specifically, we use a single representational model [39]
for multi-agent inputs and encode interactions through novel
use of hypercolumn descriptors [2] that extracts information
from features at multiple scales. Moreover, we transform
the prediction problem to normal-tangential (nt) coordinates
with respect to input lanes. This is critical in order to use
lane centerlines as anchors. Further, we regularize anchor
outputs through auxiliary xy predictions to make them less
susceptible to bad anchors and rely on agent dynamics. Fi-
nally, we rank our predictions through an Inverse Optimal
Control based ranking module [25].

In summary, our contributions are the following:

• A novel Divide and Conquer approach as a better initial-
ization to WTA objective that captures data distribution
without any spurious modes.

• A new anchor based trajectory prediction framework
called ALAN that uses existing centerlines as anchors
to provide context-aware outputs with strong semantic
coupling.

• Strong empirical performance on the Nuscenes urban
driving benchmark.

2. Related Work

Multi-Choice Learning: Multi-modal predictions have
been realized in different domains through Multi-choice
learning (MCL) [17, 12, 26] objectives in the past. Several
works have shown use cases of MCL to provide diverse hy-
potheses in classification [26, 34], segmentation [26, 34],
captioning [26], pose estimation [34], image synthesis [10]
and trajectory proposals [40]. Convergence issue related to
WTA objectives have been shown in [34, 30]. Following
this work, [34] proposed a relaxed winner-takes-all objective
(RWTA) to solve the convergence problem but this method
itself suffers from the problem of hypotheses incorrectly
capturing the data distribution. [30] proposed an evolving
winner-takes-all (EWTA) loss that captures the distribution
better compared to [34]. Despite the aforementioned im-
provements, these methods still can’t capture the data distri-
bution accurately due to spurious modes at equilibrium or

hypotheses untrained during the training process. Alterna-
tively, we propose a Divide and Conquer approach where
we exponentially increase the effective number of outputs
during training with set of hypotheses capturing some part
of the data at every stage.

Forecasting Methods: The future trajectory prediction
has been investigated broadly in the literature using both
classical [42, 27, 23] and deep learning based methods
[16, 1, 39]. Deterministic models [1, 29, 36] predict most
likely trajectory for each agent in the scene while neglect-
ing the uncertainties inherited in the trajectory prediction
problem. To capture the uncertainties and create diverse
trajectory predictions, stochastic methods have been pro-
posed which encode possible modes of future trajectories
through sampling random variables. Non-parametric deep
generative models such as Conditional Variational Autoen-
coder (CVAE) [25, 3, 22, 20, 39] and Generative Adversarial
Networks (GANs) [24, 16, 35] have been widely used in
this domain. However, these methods fail to capture all un-
derlying modes due to imbalance in the latent distribution
[43]. Recent methods predict a fixed set of diverse trajecto-
ries [32, 28] for the same input context. Our method uses a
similar approach to predict a set of M hypothesis.

Representation: HD map rasterization have been widely
used in the literature to encode and process map informa-
tion by neural networks [3, 46, 13, 6, 39]. Some methods
[38, 31] construct top view map using semantics and depth
information from perspective images. Some [44, 6] use a
combination rasterzied HD maps and sensor information.
Several recent works [28, 15] utilize map information di-
rectly by representing the vectorized map data as a graph
data structure. Our work uses a hybrid map input combining
both rasterized map and vectorized lane data provided as
input for every agent at its location on the spatial grid [39].

Trajectory Prediction: Traditionally, several works
[39, 28, 15, 32] formulate trajectory prediction problem as a
regression over cartesian coordinates. [38] poses it as a clas-
sification of future locations over a spatial grid. Chang et. al
[9] use a normal-tangential coordinate similar to ours but is
only limited to classical nearest neighbor and vanilla LSTM
[19] approaches. Related to our work, some methods tackle
the multi-modality problem by quantizing the output space
into several predefined diverse anchors and then reformulat-
ing the original trajectory problem into sequential anchor
classification (selection) and offset regression sub-problems
[45, 33, 8, 44]. However, Anchors usually are pre-clustered
into a fixed set as a priori or are calculated in real-time based
on kinematic heuristics [45]. Hence, the process of creating
anchors may add computational complexity in the inference
time, also it could be highly scenario dependent and hard
to generalize. In contrast, our method uses HD map center-
line information as anchors which is consistent for diverse
scenarios and also readily available at inference.
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(a) Init (b) WTA (c) RWTA (d) EWTA

(e) DAC - Depth 1 (f) DAC - Depth 2 (g) DAC - Depth 3 (h) DAC - Depth 4

Figure 2: Toy example comparing different versions of winner-takes-all and enclosed voronoi regions of their predicted hypotheses. The
toy data is shown in red and the hypotheses are shown in white. With Depth=1 for DAC, it contains a single set with M hypotheses,
thus all hypotheses are penalized to match the data and reach the equilibrium. As the depth increases the number of sets in the list grows
exponentially as every set is broken down into halves (e −→ f −→ g −→ h). Since we show the same ground truths to all the hypotheses in a
set, they reach the same equilibrium position forming centroidal voronoi tessellation with number of outputs effectively equal to the number
of sets in the list (e −→ 1, f −→ 2, g −→ 4, h −→ 8). In the final stage (h), every set contains one hypothesis resembling a WTA objective. In
comparison to DAC, other WTA objectives model the data distribution incorrectly since some Voronoi regions do not capture any part of the
data, resulting in spurious modes.

3. Divide and Conquer

In this section, we provide detailed description of our
method in training Multi-Hypothesis prediction networks
where our approach acts as an initialization technique for
winner-takes-all [26] objective. Let X denote the vector
space of inputs and Y denotes the vector space of output
variables. Let D = {(xi, yi), ..., (xN , yN )} be a set of N
training tuples and p(x, y) = p(y|x)p(x) be the joint proba-
bility density. Our goal is to learn a function fθ : X −→ YM
that maps every input in X to a set of M hypotheses. Mathe-
matically, we define:

fθ(x) = (f1θ (x), ..., fMθ (x)). (1)

As shown by Rupprecht et al. [34], winner-takes-all ob-
jective minimizes the loss with the closest of M hypotheses:

∫
X

M∑
j=1

∫
Yj(x)

L(f jθ (x), y)p(x, y)dydx, (2)

where Yj is the Voronoi tessellation of label space with
Y = ∪Mj=1Yj . This objective leads to Centroidal Voronoi
tessellation [14] of outputs where each hypothesis minimizes
to the probabilistic mass centroid of the Voronoi label space
Yj enclosed by it. In practice, to obtain diverse hypotheses
WTA objective can be written as a meta loss [30, 34, 26, 17],

LWTA =

K∑
k=1

δk(k == arg min
i
L(f iθ))L(fkθ (x), y), (3)

where δ(·) is the Kronecker delta function with value 1 when
condition is True and 0 otherwise.

Initialization difficulties for WTA As mentioned by
Makansi et al. [30] Equation 3 can be compared to EM al-
gorithm and K-means clustering where they depend mainly
on initialization for optimal convergence. As shown in 2b
this makes training process very brittle as the Voronoi re-
gion of only few hypotheses encloses the data distribution,
leaving most of the hypotheses untrained due to winner-
takes-all objective. The alternative solution proposed by
Ruppercht et al. [34] to solve the convergence problem by
assigning εweight to the non-winners does not work as every
ground truth associates with atmost one hypothesis making
other non-winners to reach the equilibrium as shown in 2c.
Makansi et. al, [30] then proposed evolving winner-takes-all
(EWTA) objective where they update top k winners. The k
varies starting from k = M to k = 1 leading to winner takes
all objective in training process. This method captures the
data distribution better compared to RWTA and WTA but
still produces hypothesis with incorrect modes as shown in
the Figure 2d.
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DAC for diverse non-spurious modes We propose an
novel initialization technique called Divide and Conquer
that alleviates the problem of spurious modes, leaving the
Voronoi region of every output hypothesis to capture some
part of the data, as shown in Figure 2h. We divide M hy-
potheses into k sets and update the set with argmin outputs
to match the ground truth. The value of k starts with 1 and
increases exponentially as every set is broken down into two
halves as we progress through the training. This creates a bi-
nary tree with the depth of the tree dependent on the number
of output hypotheses M . Algorithm 1 shows pseudo-code of
the proposed Divide and Conquer technique. Here depth
specifies the maximum depth that can be reached in the
current training stage and we define list as variable con-
taining set of hypotheses at any stage in the training. Further,
we define newly formed sets from kth set as setk1 and setk2.
Set from the list that produces argmin output is denoted
as mSet. Finally we take mean loss of all hypotheses in
mSet to get LDAC .

From Figure 2e, with k = 1 and list containing a
single set, all M hypotheses reach towards the equilibrium.
As the number of sets in the list increases from 2e to 2f
the hypotheses divide the distribution space based on the
Voronoi region to capture different parts of the data. The
effective number of outputs grows at every stage, with the
data captured by the kth set in the previous stage split across
two newly formed sets in the next stage. Finally, as we reach
the leaf nodes, every set contains one hypothesis leading to
a winner-takes-all objective similar to Equation 3.

DAC starts with all hypotheses fitting the whole data and
at every stage DAC ensures some data to be enclosed in
the Voronoi space. During split, hypotheses divide the data
enclosed within their Voronoi space to reach new equilib-
rium. Although, DAC does not guarantee equal number of
hypotheses capturing different modes of the data it ensures
convergence. Further we would like to note that DAC does
not have any significant computational complexity as only di-
viding into sets and min calculations are involved. In Section
5, we show benefits of DAC in capturing multimodal distri-
butions better, producing diverse set of hypotheses compared
to other WTA objectives.

4. Trajectory Prediction with Lane Anchors
In this section, we introduce a single representation model

called ALAN that produces lane aware trajectories for multi-
ple agents in a forward pass. We formulate the problem as
one shot regression of diverse hypotheses across time steps.
We now describe our method in detail.

4.1. Problem Statement

Our method takes scene context input in two forms: a)
rasterized birds-eye-view (BEV) representation of the scene
denoted as I of size H × W × 3 and b) per-agent lane

Algorithm 1 Divide and Conquer technique

1: procedure DAC(loss, depth)
2: set1 = {loss} . All M hypotheses
3: list = [set1]
4: for i← 2 to depth do
5: for setk ∈ list do
6: � Divide setk into halves
7: list + = [{setk1}, {setk2}]
8: mSet = {setk : min(setk) < min(setj);∀j ∈

{1..len(list)}, j 6= k}
9: LDAC = mean(mSet)

10: return LDAC

centerline information as anchors. We define lane anchors
L = {L1, ...Lp} as a sequence of p points with coordinates
Lp = (x, y) in the BEV frame of reference. We denote
Xi = {X1

i , ...X
T
i } as trajectory coordinates containing past

and future observations of the agent i in Cartesian form,
where Xt

i = (xti, y
t
i). For every agent i, we identify a

set of candidate lanes that the vehicle may take based on
trajectory information like closest distance, yaw alignment
and other parameters (see supplementary). We denote this as
a set of plausible lane centerlines A = {L1, ...,Lk}, where
k represents total number of lane centerlines along which
the vehicle may possibly travel. We then define vehicle
trajectories Xi along these centerlines in a 2d curvilinear
normal-tangential (nt) coordinate frame. We denote Ni,k =
{N1

i,k, ..., N
T
i,k} as the nt coordinates for the agent i along

the centerline Lk, where N t
i,k = (nti,k, l

t
i,k) denotes normal

and longitudinal distance to the closest point along the lane.
Use of nt coordinates is crucial to capture complex road
topologies and associated dynamics to provide predictions
that are semantically aligned and has been studied in our
experiments (Section 5).

We then define trajectory prediction problem as the task
of predicting ntYi,k = {N tobs

i,k , ..., NT
i,k} for the given lane

anchor Lk provided as input to the network. We follow an
input representation similar to [39], where we encode agent
specific information at their respective Xtobs

i locations on
the spatial grid. Finally, to get trajectories in BEV frame
of reference we convert our output predictions to cartesian
coordinates based on the anchor Li,k given as input to the
network.

4.2. ALAN Framework for Trajectory Prediction

An overview of our framework is shown in Figure 3. Our
method consists of five major components: a) a centerline
encoder b) a past trajectory encoder c) a multi-agent convo-
lutional interaction encoder d) hypercolumn [2] trajectory
decoder and e) an Inverse Optimal Control (IOC) based
ranking module [25].
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Figure 3: Overview of our proposed ALAN approach. The method takes in past trajectory along with lane anchor and BEV
map as input to provide multi-hypothesis predictions for all agents at once.

Centerline Encoder: We encode our input lane informa-
tion Li,k for every agent through a series of 1D convolutions
to produce an embedded vector Ci,k = Cenc(Li,k) for every
agent in the scene.

Past Trajectory Encoder: Apart from nt coordinates
Ni,k for the lane anchor, we provide additional Xi as in-
put to the past encoder. We first embed the temporal inputs
through a MLP and then pass it through a LSTM[19] net-
work to provide a past state vector htobsi . Formally,

sti = MLP (Xt
i , N

t
i,k) (4)

htobsi = LSTM(s1..tobsi ) (5)

Multi-Agent Convolutional Encoder: We realize multi-
agent prediction of trajectories in a forward pass through a
convolutional encoder module [39]. First, we encode agent
specific information Ci,k,h

tobs
i at their respective locations

Xtobs
i in the BEV spatial grid. This produces a scene state

map S of size H×W ×128 containing information of every
agent in the scene. We then pass this through a convolutional
encoder along with the rasterized BEV map I to produce acti-
vations at various feature scales. In order to calculate feature
vectors of each individual agent, we adapt a technique from
Bansal et al. [2] to extract hypercolumn descriptors Di from
their locations. The hypercolumn descriptor contains fea-
tures extracted at various scales by bi-linearly interpolating
Xtobs
i for different feature dimensions. Thus,

Di = [c1(Xt
i ), ..., ck(Xt

i )], (6)

where ck is the feature extracted at kth layer by bilinearly
interpolating the input location to the given dimension. The

intuition is to capture interactions at different scales when
higher convolutional layers capturing the global context and
low-level features retaining the nearby interactions. In Sec-
tion 5, we show using hypercolumn descriptors in trajectory
prediction task can be beneficial compared to just using
global context vectors.

Hypercolumn Trajectory Decoder: The hypercolumn
descriptor Di of every agent is then fed through a decoder
containing a series of 1x1 convolutions to output M hy-
potheses at once. Here we investigate two variants of ALAN
prediction. ALAN-nt where we predict nt trajectories ntŶi

in the direction of the lane and ALAN-ntxy which also pro-
vides an auxiliary xy predictions xyŶi. Linear values in nt
can correspond to trajectories of higher degrees based on
the input anchor. Moreover, two trajectories having same
nt values can have completely different dynamics. Thus we
make use of the auxiliary predictions to regularize anchor
based outputs to make the network aware of agent dynam-
ics and less susceptible to bad anchors. The M hypotheses
predicted from our network is given as:

ntŶi,
xy Ŷi = CNN1∗1(Di), (7)

ntŶi = {ntŶi,1,nt Ŷi,2...,nt Ŷi,M}, (8)
xyŶi = {xyŶi,1,xy Ŷi,2...,xy Ŷi,M}. (9)

Ranking Module: We use the technique from Lee et
al. [25] to generate scores sYi = {sYi,1,s Yi,2, ...,s Yi,M}
for the M output hypotheses. It measures the goodness
sYi,k of predicted hypotheses by assigning rewards that
maximizes towards their goal[41]. The module uses pre-
dictions ntŶi to obtain the target distribution q, where
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(a) GT (b) WTA (c) RWTA (d) EWTA (e) DAC

Figure 4: The figure illustrates predicted hypotheses and
learned mixture distribution of goals using different WTA
objectives on the CPI test set. The purple and black box rep-
resent car and pedestrian at their current location. Predicted
hypotheses are shown in their respective colours. (e) cap-
tures the data distribution better with hypothesis spread out
across the crosswalk resembling the ground truth distribution
of points.

q = softmax(−d(ntYi,
nt Ŷi)) and d being the L2 distance

between the ground truth and predicted outputs. Thus, the
score loss is given as Lscore = Cross-Entropy(sYi,q).

4.3. Learning

We supervise the network outputs {ntŶi,
xy Ŷi} as the

L2 distance with their respective ground truth labels ntY
for the input lane anchor Lk and xyY. We use the proposed
Divide and Conquer technique to train our Multi-Hypothesis
prediction network. Hence, the reconstruction loss for both
primary and auxiliary predictions is given by:

ntLDAC = DAC(ntŶi), (10)

xyLDAC = DAC(xyŶi). (11)

Additionally, we penalize our anchor based predictions
based on xyŶi by transforming the predictions to nt coor-
dinates xyŶnt

i along the input lane. We also add the reg-
ularization other way to penalize xyŶi predictions based
on the anchor outputs ntŶi by converting them to xy co-
ordinates ntŶxy

i . We add the regularization as L2 distance
between the converted primary and auxiliary predictions for
all hypotheses:

ntLxy = L2(ntŶi,
xy Ŷnt

i ), (12)

xyLnt = L2(xyŶi,
nt Ŷxy

i ). (13)

The total learning objective for the network to minimize
can be given by,

L =ntLDAC +xy LDAC
+ λnt1 Lxy + λxy2 Lnt + Lscore.

(14)

5. Experiments
We first evaluate our proposed Divide and Conquer tech-

nique on the synthetic Car Pedestrian dataset[30]. Further,
we show evaluations of DAC and the proposed anchor based
prediction technique on Nuscenes[5] prediction dataset.

Table 1: Comparion of Methods on CPI dataset based on
FDE and EMD metrics, where p - pedestrian and c - car

Method pFDE cFDE Avg FDE pEMD cEMD Avg EMD

DAC 5.56 5.61 5.58 1.14 1.48 1.31
EWTA[30] 5.8 5.63 5.76 1.09 1.59 1.34
RWTA[34] 4.90 9.56 7.23 1.02 1.64 1.33
WTA[26] 5.32 6.32 5.82 1.17 2.41 1.79

CVAE 15.9 19.2 17.6 1.72 2.74 2.23

5.1. Car Pedestrian Dataset

Unlike real world settings where only a single outcome
is observed, CPI dataset consists of interacting agents with
multi-modal ground truths. We aim to evaluate how well our
multi-hypothesis predictions capture the true distribution of
samples in the test set. We use a similar training strategy
from [30] using a ResNet-18 [18] encoder backbone where
we train a two-stage mixture density network [4]. The first
stage takes past observations of the car and pedestrian as the
inputs and predicts k output hypotheses containing future
goals of both actors after ∆t timestep. We train the first stage
using different variants of the winner-takes-all loss function.
The second stage then fits a mixture distribution with M
modes over the hypothesis by predicting soft-assignments
for the outputs. We refer readers to Equations 7, 8 and 9
from [30] for more details about calculating the parameters
for the mixture distribution. We use evaluation metrics such
oracle error (FDE) and Earth Mover’s Distance (EMD) used
in [30].

Oracle error (FDE) measures the diversity of our out-
puts predictions by choosing the closest hypothesis with the
ground truth.

EMD distance quantifies the amount of probability mass
that has to be moved from the predicted distribution to match
the true distribution.

From Table 1 it can be inferred that the proposed DAC
method outperforms the other variants of WTA objective
showing that DAC captures the data distribution better com-
pared to EWTA, RWTA and WTA. This can also been seen
in Figure 4 where network trained with DAC objective cap-
tures the ground truth distribution of actors better compared
to other variants. The average EMD of the proposed DAC
is significantly better than WTA and comparable to EWTA
and RWTA objective. DAC better captures goals for the cars
that spread across compared to pedestrian goals. Moreover,
as shown by Table 1, the average oracle error (FDE) for
the DAC method is significantly lower compared to other
variants confirming that DAC WTA produces diverse hy-
potheses.

5.2. Nuscenes Dataset

Nuscenes[5] contains a large collection of complex road
scenarios from cities of Boston and Singapore. Approx-
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(a) (b) (c) (d)

Figure 5: Shows example predictions from ALAN. The past trajectory is shown in brown and the GT is shown in black. The
endpoint of GT is shown as a green dot. The input lane anchor is shown in cyan, with predicted trajectories in green and their
endpoints as triangles. (a) and (b) shows predictions that follow a complex lane structure. Anchor based predictions can be
beneficial especially for a longer prediction horizon as the complexity of the trajectory increases anchors can be helpful in
following the semantics. (c) predicts a U-turn with appropriate dynamics when the lane of interest is in opposite direction and
(d) shows a multi-agent prediction scenario.

Table 2: Nuscenes Trajectory Prediction Benchmark

Model mADE 1 mADE 5 mADE 10 Miss 2 5 Miss 2 10 mFDE 1 mFDE 5 mFDE 10 OffRoadRate

cxx - 1.63 1.29 69 60 8.86 - - 0.08
pq - 2.23 1.68 69 56 9.56 - - 0.12

CoverNet[33] - 2.62 1.92 76 64 11.36 - - 0.13
MTP [11] 4.42 2.22 1.74 74 67 10.36 4.83 3.54 0.25

MultiPath [8] 4.43 1.78 1.55 78 76 10.16 3.62 2.93 0.36
Trajectron++[37] - 1.88 1.51 70 57 9.52 - - 0.25
MHA JAM [32] 3.69 1.81 1.24 59 45 8.57 3.72 2.21 0.07

ALAN (top-M) 4.62 1.87 1.22 60 49 9.98 3.54 1.87 0.01
ALAN (Oracle) 4.61 1.78 1.16 59 48 9.95 3.29 1.70 0.01
ALAN (BofA) 4.67 1.77 1.10 57 45 10.0 3.32 1.66 0.01

imately 40k instances were extracted for the prediction
dataset. It contains challenging sequences such as ones with
U-turns and complex road layouts.

5.2.1 Baselines

We show comparisons of our ALAN predictions with several
baseline methods evaluated on Nuscenes benchmark. MTP
[11] uses rasterized image as input to predict trajectories.
CoverNet [33] uses fixed set of trajectories to solve the pre-
diction as a classification over the trajectory set. Multipath
[8] is the closest baseline that uses time parameterized an-
chor trajectories obtained from the train set and formulates
the problem as regression of offset values with respect to
their anchor heads. MHA JAM [32] is recent method that
uses joint agent-map representation to produce outputs with
multi-head attentions. Trajectron++ [37] is graph recurrent
model that predicts trajectories incorporating agent dynam-
ics and semantics. We utilize the numbers for [11] and [8]
from [32].

5.2.2 Metrics

We use standard evaluation metrics such as Average Dis-
placement Error (mADEM ) and Final Displacement Error
(mFDEM ). Further, we compute miss rate (Missd,M ) of top
M likely trajectories with the GT. A set of predictions is
considered to be a miss if there’s no hypothesis across pre-
dictions having maximum displacement point less than the
threshold d. OffRoadRate computes percentage of output
trajectories that fall outside the drivable region. We use the
example API provided by Nuscenes to compute our metrics.

5.2.3 Quantitative Results

We first show that ALAN can achieve on par or better per-
formance compared to our baseline approaches. Here we
evaluate ALAN with different anchor sampling strategies,
top-M, oracle and best-of-all (BofA). In ALAN (top-M) we
pick top M trajectory outputs from different anchors based
on predicted IOC scores for each trajectory. ALAN (ora-
cle) uses oracle anchor with highest centerline score (see
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Table 3: Ablation Study on Nuscenes dataset

Model mADE 1 mADE 5 mADE 10 Miss 2 5 Miss 2 10 mFDE 1 mFDE 5 mFDE 10 OffRoadRate

CVAE 5.51 2.12 1.55 76 62 12.03 4.45 2.85 0.03
MCL + Global 8.45 2.85 1.88 87 75 17.52 5.34 3.05 0.16
MCL + Hyper 5.55 1.99 1.33 72 58 12.11 3.81 2.26 0.12
MCL + Poly 6.50 2.03 1.27 77 57 13.6 3.88 2.01 0.05

MCL + LA - nt 4.69 2.62 1.45 78 59 9.86 4.83 2.26 0.05
MCL + LA - ntxy 6.65 2.14 1.41 75 53 13.86 3.97 2.18 0.01

MCL + LA - ntxy + Reg. + WTA 7.45 3.91 1.72 82 71 13.5 6.49 2.37 0.01
MCL + LA - ntxy + Reg. + RWTA 4.41 2.55 1.21 64 45 9.22 5.03 1.77 0.01
MCL + LA - ntxy + Reg. + EWTA 4.38 2.06 1.20 64 52 9.16 3.83 1.76 0.01
MCL + LA - ntxy + Reg. + DAC 4.31 2.10 1.17 63 50 9.06 3.98 1.73 0.01

supplementary) and ALAN (BofA) picks best from top-k
hypothesized lane anchors. Results represented by Table 2
demonstrate that all our ALAN evaluations either show on
par performance or significantly outperform other baselines
on several metrics with at least 11% improvements in terms
of mADE10 and 25% boost in terms mFDE10 from our BofA
method. Moreover, all our ALAN predictions provide an
OffRoadRate of 0.01 showing only 1% of the predicted tra-
jectories fall outside the road. This is significantly lower
compared to other baselines where they have 7% or higher
OffRoadRate’s. This strong coupling of output predictions
with the semantics can be attributed to the anchor lanes that
help in providing output predictions in the lane direction.
Other approaches like [8, 33] use trajectories extracted from
the train set, either as anchors or to perform classification,
this can lead to poor generalization of outputs to unseen
scenarios and trajectories with complex lane structure. More-
over, we would like to note that our ALAN performance is
understated due issues such as unconnected lanes and places
without lane centerlines in the data leading to bad anchors.
We talk about such situations in supplementary but have not
removed these here for benchmark purposes.

Ablation Study: Further, we perform ablation studies of
our ALAN along with the proposed DAC and other variants
in Table 3. We first introduce hypercolumn descriptors [2]
to extract multi-scale features and compare it with using a
global context vector fed as input to the decoder. Then we in-
vestigate several variants of our ALAN predictions. First, we
add reference centerline as input and predict trajectories in
xy coordinate space (MCL + Poly). This improved the per-
formance significantly. Using lane centerlines as anchors and
predicting trajectories in nt space (MCL+LA-nt) performed
a little worse but we attribute this to networks difficulty in
figuring out agent dynamics from anchor based inputs. For
example, two trajectories with the same nt coordinates can
have different dynamics based on the lane that they’re travel-
ling. So we further add xy coordinates as input and predict
auxiliary trajectories in cartesian space (MCL+LA-ntxy).
As it is shown in Table 3, making such auxiliary predictions
improved the primary anchor based outputs. Further, we

regularize our anchor outputs using auxiliary predictions and
vice-versa. The intuition is that anchor outputs can benefit
from auxiliary predictions when there’s a bad input anchor
since auxiliary predictions are not constrained to provide
trajectories along the lane direction. Adding a regularizer
to match our primary and auxiliary trajectories significantly
improved our anchor output performance as seen in Table 3
from MCL+LA-ntxy+Reg values.

Comparing variations of ALAN in Table 3, it can be in-
ferred that network trained with DAC beats the EWTA and
RWTA objectives confirming the ability of the proposed
DAC method to produce diverse hypotheses and capture
the data distribution better. Please note that although we
perform evaluations for DAC in trajectory prediction set-
ting, MCL[26] techniques are applicable in a wide range of
problems where our DAC method can be used as a better
initialization strategy for WTA objectives.

5.2.4 Qualitative Results
Figure 5 shows qualitative results from ALAN. In general,
using lane as anchors and transforming the prediction prob-
lem to nt space can be helpful to guide the prediction and
follow semantics. As we predict trajectories for a longer
time horizon the executed trajectories become complex with
more than just one straight or turn maneuvers where using
lane as anchors can simplify the problem.

6. Conclusion
In this paper we addressed issues related to learning

multi-modal outputs using WTA objectives and using driving
knowledge to impose constraints on output predictions. First,
we introduced a novel DAC approach that learns diverse hy-
potheses to capture the data distribution without any spurious
modes. Further, we introduced ALAN that provides diverse
and context aware trajectories using anchor lanes. Our ex-
periments on both synthetic and real data demonstrated the
superiority of our proposed DAC method in learning multi-
modal outputs. In addition, we demonstrated that using lane
anchors can be helpful in providing accurate predictions with
strong semantic coupling.
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