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Abstract

We present a proof-of-concept LIDAR design that al-
lows adaptive real-time measurements according to dy-
namically specified measurement patterns. We describe
our optical setup and calibration, which enables fast
sparse depth measurements using a scanning MEMS
(micro-electro-mechanical) mirror. We validate the ef-
ficacy of our prototype LIDAR design by testing on over
75 static and dynamic scenes spanning a range of envi-
ronments. We show CNN-based depth-map completion
experiments which demonstrate that our sensor can re-
alize adaptive depth sensing for dynamic scenes.

1. Introduction

Learning-enabled depth sensing has impacted every
aspect of robotics. This success has prompted vision
researchers to close the loop between active sensing and
inference—with methods for correcting incomplete and
imperfect depth measurements [44, 48], as well as those
that decide where to sense next [26, 5].

However, such work is predicated on LIDAR systems
that are flexible in how they make measurements. But
this capability does not exist in most existing LIDAR
hardware, where sampling is done in a set of fixed an-
gles, usually modulated by slow mechanical motors.

We present a proof-of-concept, adaptive LIDAR
platform that can leverage modern vision algorithms.
It permits making measurements with different sam-
pling patterns—providing a speed advantage when
fewer measurements are made—and is co-located with
a color camera to fully realize the benefits of deep depth
completion and guided sampling.

∗Equal Contribution

1.1. Why Foveating LIDAR?

Unlike most artificial sensors, animal eyes foveate, or
distribute resolution where it is needed. This is com-
putationally efficient, since neuronal resources are con-
centrated on regions of interest. Similarly, we believe
that an adaptive LIDAR would be useful on resource-
constrained small platforms, such as micro-UAVs.

Furthermore, our design uses a MEMS mirror as
the scanning optics, which is compact and low-power.
MEMS scanning is faster than mechanical motors,
without similar wear-and-tear, and this allows for mul-
tiple fovea or regions-of-interest in a scene. Addition-
ally, MEMS mirrors are neither limited to coherent illu-
mination, like phase arrays, nor constrained to specific
light wavelengths, like photonics-based systems.

To demonstrate depth sensing flexibility, we first
train a deep neural network for depth completion and
show that it delivers high quality scene geometry. We
evaluate this with different sampling patterns, includ-
ing those that are concentrated in a region of interest
specified by vision-based control.

Our contributions include building a novel adap-
tive LIDAR (Fig. 1) that enables flexible deep depth
completion (Fig. 4). We also confirm that LIDAR
foveation improves sensing in areas of interest (Table
6). We provide analysis of receiver optics character-
istics, particularly the issue of small aperture created
by the MEMS mirror (Table 2). Finally, we present
a working vision-based adaptive LIDAR, showing that
real-time foveation is feasible (Fig. 5).

2. Related Work

Common depth modalities: Many high-quality
depth sensors exist today. In Table 1 we show quali-
tative comparisons with these. Our sensor is the first
proof-of-concept, real-time, adaptive LIDAR.
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Figure 1: Experimental setup. We have designed a flexible MEMS mirror-modulated scanning LIDAR, as shown
in (I). In (II), we co-locate this directionally controllable LIDAR with a color camera, allowing for deep depth
completion of the sparse LIDAR measurements. In (III) we show a picture of the hardware setup corresponding to
(I-II). The long optical path is simply an artifact of having a single circuit board for both the LIDAR receiver and
transmitter. In (IV) we show adaptive sampling (middle) and deep depth completion (bottom) results captured
with our Adaptive LIDAR Prototype.

Sensor Technology Outdoors Textureless Adaptive
ELP-960P2CAM Conventional Passive Stereo X × ×

Kinect v2 Time-of-Flight (LED) × X ×
Intel RealSense Structured Light Stereo (LED) X X ×

Velodyne HDL-32E Time-of-Flight (Laser) X X ×
Resonance MEMS / Intel L515 Time-of-Flight (Laser) X X ×

Robosense RS-LiDAR-M1 Solid State Time-of-Flight (Laser) X X ×
Programmable Light curtains Adaptive Structured Light X X X

Our sensor Adaptive LIDAR X X X

Table 1: Our Adaptive LIDAR vs. other common modalities. We compare common depth modalities
such as stereo [28], Kinect [35], Velodyne [15], Robosense solid state LIDAR and Resonance MEMS sensors [13,
41, 24] such as the Intel L515. Our work is closest to programmable light curtains for flexible, structured light
reconstruction [3, 46]. This paper is an alternate research direction with an adaptive LIDAR.

MEMS/Galvo mirrors for vision and graphics:
MEMS mirror modulation has been used for structured
light [37], displays [21] and sensing [34]. In contrast
to these methods, we propose to use angular control
to increase sampling in regions of interest as in [43].
While MEMS mirrors have been used in scanning LI-
DARs, such as from NASA and ARL [13, 41, 24], these
are run at resonance with no control, while we show
adaptive MEMS-based sensing. Such MEMS control
has only been shown [22] in toy examples for highly
reflective fiducials in both fast 3D tracking and VR
applications [31, 30], whereas we show results on real
scenes. [39, 8] show a mirror modulated 3D sensor
with the potential for flexibility, but without leverag-
ing guided networks, and we discuss the advantages of
our novel receiver optics compared to these types of
methods. Galvo mirrors are used with active illumina-

tion for light-transport [17] and seeing around corners
[36]. Our closest work is the use of light curtains for
flexible, structured light reconstruction [3, 46]. In con-
trast, ours is a MEMS-mirror driven LIDAR system
with an additional capability of increasing resolution
in some region of interest. In this sense, we are the
first to extend adaptive control [6, 42, 8], to LIDAR
imaging of real dynamic scenes.

Adaptive Scanning Lidars: Commercially available
systems from AEye and Robosense are designed to im-
prove lidar-rgb fusion for large systems such as au-
tonomous cars. In contrast, our goal is to impact
small autonomous systems and our choice of MEMS
mirror modulation and our optical innovations track
these goals. [47] propose a progressive pedestrian scan-
ning method using an actively scanned LIDAR, but re-
sults are shown in simulation rather than on a hardware



platform. [42] propose directionally controlling the LI-
DAR scan, but these adaptive results have been shown
only for static scenes. In contrast, we show a real-time
adaptive LIDAR that works for dynamic scenes.
Guided and Unguided Depth Completion: The
impact of deep networks on upsampling and super-
resolution has been shown on images, disparity/depth
maps, active sensor data etc. [4, 11, 29, 27, 44, 38, 20]
with a benchmark on the KITTI depth completion
dataset [44]. Upgrading from sparse depth samples has
been shown [45], and guided upsampling has been used
as a proxy for sensor fusion such as the work that has
recently been done for single-photon imagers [25] and
flash lidar [14]. In contrast, we measure sparse low-
power LIDAR depth measurements and we seek to flex-
ibly change the sensor capture characteristics in order
to leverage adaptive neural networks such as [26, 5].

3. Sensor design

Fig. 1 shows our sensor design, which consists of a
small aperture, large depth-of-field color camera, opti-
cally co-located with a MEMS-modulated LIDAR sen-
sor. If the camera has a FOV of ωcam steradians and
a resolution of I pixels, then the average pixel support
is ωpix = (ωcam/I). If the LIDAR laser’s beam diver-
gence is ωlaser steradians, then the potential acuity in-
crease from LIDAR to camera is (ωlaser/ωpix). Guided
depth completion seeks to extract this potential, and a
foveated LIDAR can leverage this capability.

Next, in Sect. 3.1, we discuss the MEMS-modulated
transmitter optics that enable compact, low-power, fast
and foveated controlled scans. The cost, however, is
that MEMS mirrors act as a small aperture that re-
duces the received radiance, when compared to large
mirrors such as galvos. In the following Sect. 3.2
we model the receiver optical design space, comparing
FOV, volume and received radiance.

3.1. MEMS Mirror based Transmitter Optics

The transmitter optics consist of the pulsed light
source and MEMS mirror. The LIDAR’s beam is
steered by the mirror, whose azimuth and elevation
are given by changes in control voltages over time,
(θ(V (t)), φ(V (t)) over the MEMS mirror FOV ωmirror.
Controlling the scan V (t) can enable attending to a
region-of-interest given by an adaptive algorithm. The
challenge in transmitter optics is to provide a powerful,
narrow laser with low beam divergence, given by

ωlaser ≈
M2 λ

wo π
(1)

where M is a measure of laser beam quality and wo
refers to the radius at the beam waist, which we use

Figure 2: Our proposed design vs. other designs.
In (I) we depict three common receiver designs, includ-
ing retro-reflection (a), receiver array (b) and single
detectors (c). Our design is a variant of (c), where we
suggest a simple optical trick, such that the single de-
tector is placed within the focal distance of the lens.
This enables consistent FOV over range, as shown by
the red curve in (II) and the designs in (III-IV). Simu-
lations for a f = 15mm unit diameter lens.

a proxy for MEMS mirror size. Previous MEMS-
mirror modulated LIDAR systems cover this design
space, from high-quality erbium fiber lasers with near-
Gaussian profiles, used by [41] where M is almost unity,
to low-cost edge-emitting diodes, such as [42] where
M ≈ 300 on the diode’s major axis. Our setup follows
the low-cost diode route, with an additional two-lens
Keplerian telescope to reduce the beam waist to 6mm
and an iris to match the MEMS mirror aperture instead
of an optical fiber [8].

3.2. Receiver Optics Design Tradeoffs

From the previous section, we can denote the trans-
mitter optics design space as a combination of laser
quality M and MEMS mirror size wo, which we write
as Πt = {M,wo}. Now, we add receiver optics to the
design space, which we denote as Πr = {n,A, u, f},
with n2 photodetectors in the receiver, A as the aper-
ture, u as the distance between the photodetector array
and the receiver optics, and f as the focal length of the
receiver optics. Therefore the full design space consists
of both receiver/transmitter optics, Π = {Πr,Πt}.

We define the characterization of any instance
within the design space Π as consisting of field-of-
view Ω steradians, received radiance s and volume



Design Volume FOV Received Radiance

Retroreflection
π u w2

o

12 = MEMS FOV ωmirror
atan(wo

2Z )

ωlaserZtan(
ωlaser

2 )

Receiver array u A2 min(2 atan( A2u ), ωmirror)
1

2 Z tan(
ωlaser

2 )

Single detector .
π u A2

12 min(2atan(
A(Z−f)||Zu−fu−fZ

Z−f ||
2ufZ ), ωmirror)

1

4Zatan(
A(Z−f)||Zu−fu−fZ

Z−f
||

2ufZ )tan(
ωlaser

2 )
Conventional (u ≥ f)

Ours (u < f)

Table 2: Receiver models. Please see supplementary for derivations.

V denoted as Ξ = {Ω, s, V }. The range Z is deter-
mined by the received radiance and the detector sen-
sitivity. Computing these parameters depends on the
design choices made, and we provide simulations com-
paring three designs: retro-reflective receivers [16] (Fig.
2I(a)), receiver arrays [8] (Fig. 2I(b)) and single-pixel
detectors [42] (Fig. 2I(c)).

3.3. Simulation Setup and Conclusions

Full derivations for the three receiver designs, shown
in Table 2, are in the supplementary material. The ta-
ble refers to receiver sensor volume, field-of-view, and
received radiance (normalized for a white Lambertian
plane). The volume is the convex hull of the opaque
baffles that must contain the receiving transducer elec-
tronics and is either a cone or cuboid. The FOV is the
range of angles that the receiver is sensitive to, upper-
bounded by the MEMS FOV ωmirror

1. Received radi-
ance is the area-solid angle product used in optics [32]
for a canonical LIDAR transducer, which can be loosely
understood as loss of LIDAR laser dot intensity due to
beam divergence and receiver aperture size when imag-
ing a fronto-parallel, white Lambertian plane.

In our noiseless simulations, we assumed a geometric
model of light. To illustrate the trade-offs, we vary the
laser quality between M = 1 to M = 100, representing
an ideal Gaussian beam vs. a cheap laser diode. For the
same reason, we vary the MEMS mirror size wo from
0.1mm (10 times larger than the TI DMD [18]) to 5mm
(a large size for a swiveling MEMS mirror). The range
of dimensions over which we explore the receiver design
space are of the order of a small camera, with apertures
0cm ≤ A ≤ 10cm, focal lengths 0mm ≤ f ≤ 50mm
and image plane-lens distances 0mm ≤ u ≤ 50mm.
In Fig. 2(II)-(IV) we describe our proposed, simple
modification to the conventional single-pixel receiver,
where photodetector is placed on the optical axis, at a
distance v larger than the focal length f . In contrast to
existing work on defocusing received radiances for FOV
adjustment and amplitude compensation (e.g. [32]),

1For simplicity, trignometric functions are written to act on
steradian quantities, but in actuality act on the apex angle of
the equivalent cone.

we do not require special optics (e.g. split lens) and
we have large off-axis FOV since the MEMS is not the
aperture for the receiver. The conclusion from these
experiments is that our sensor provides a new option
for receiver design tradeoffs, explained next.

3.4. Design tradeoffs

For a full analysis of sensor design tradeoffs, please
see the supplementary material. Here we compare our
sensor vs. other designs. In the next section, we show
how our proposed optical modification can improve sin-
gle detectors even further.

Retro-reflective receivers: We show, in the supple-
mentary, that retro-reflective designs are smaller than
ours. The small retroreflective design also has the opti-
mal FOV of the MEMS, due to co-location. Our design
does have a received radiance advantage, since retrore-
flection requires the MEMS mirror to be the aperture
for both receiver/transmitter. Fig. 3(Ia) shows how
this advantage eventually trumps other factors such as
laser quality (M = 1) or large mirrors. In the ex-
treme case of low-cost diodes, Fig. 3(Ib), our sensor
has higher received radiance at close ranges too.

Receivers arrays: Large receiver arrays take up
space, but they also have a higher received radiance,
due to having a bigger effective aperture, when com-
pared with our MEMS mirror. This is demonstrated
in Fig. 3(II) (right) for the particular case of M =
100, wo = 5mm, favoring our design. Despite this,
large arrays have higher received radiance at all depths.
However, our design can always be made smaller, in ev-
ery instance of these simulations.

Conventional Single detector: Our approach is
close to the conventional single pixel receiver, which
can allow for detection over a non-degenerate FOV if
it is defocused, as shown for a scanning LIDAR by
[42]. When the laser dot is out of focus, some part of
it activates the single photodetector. If the laser dot
is in focus, the activation area available is smaller, but
more concentrated. Next we describe and analyze our
modification to the conventional single detector.



Figure 3: Noiseless simulations comparing proposed method with other designs. In (I) we compare the
received radiance (RR) of proposed method with retroreflection for different laser qualities and mirror sizes. A
high-quality laser (I)(a) enables higher RR for close-in scenes for retroreflective designs, but at large ranges, our
method has higher RR. In (II)(a) we show that our proposed design has lower volume than a receiver array, across
a wide range of focal lengths, but a receiver array has a higher RR (II)(b), even when compared to the best case for
our sensor from (I). In (III) we compare our design with conventional single detectors, for a lens with f = 15mm.
Although our sensor shows consistent FOV ((III) left), it is always defocused, and faces an RR cost ((III) right).

3.5. Optical modification to single detectors

Our approach is based on a simple observation; plac-
ing the image plane between the lens and the focus, i.e.
v < f , will guarantee that the laser dot will never be in
focus. For imaging photographs, this is not desirable,
but for detecting the LIDAR system’s received pulse,
amplitude can be traded down, up to a point, as long
as the peak pulse can be detected. Further, this op-
tical setup ensures that the angular extent of the dot
is nearly constant over a large set of ranges. This is
further explained in the supplementary and supported
by simulations (red curve) in Fig. 3(III) (left) and ex-
plained in the ray diagrams of Fig. 3(III) (right).

For the conventional approach, when u = f , the
FOV degenerates to a small value, where received ra-
diance is also the highest. Our design does not suf-
fer this depth-dependent FOV variation and is consis-
tent across the range. As shown in the right, however,
this results in a low received radiance since the sys-
tem is always defocused. Simulations support this, in
Fig. 3(III), for u > f , shown in red, for settings of
f = 15mm,A = 100mm, over a range of sensor sizes
and ranges. In practice, we find consistent FOV to be
more valuable than received radiance.

Data
MRE RMSE log10 δ1 δ2 δ3
(%) (m) (m) (%) (%) (%)

Real 10.16 .1659 .0410 89.80 95.88 98.63

Table 3: LIDAR Evaluation. The table reports the
mean relative error (MRE), root mean squared error
(RMSE), average (log10) error, and threshold accu-
racy (δi) of the calibrated depth measurements, rel-
ative to the “ground-truth” Kinect V2 depths, over all
75 scenes of our real dataset. The Kinect V2 has an
accuracy of 0.5% of the measured range [2].

4. Towards Adaptive LIDAR

MEMS mirrors [31, 30] are fast enough to enable
adaptive sensing for dynamic scenes. The question
then becomes how to find good scan patterns, repre-
sented as voltage-dependent mirror angles over time,
(θ(V (t)), φ(V (t)). These include open loop [6, 12, 42, 8]
real-time estimation of regions of interest (ROIs) as
well as end-to-end learning to decide where to sense
next [26, 5]. Our contribution here is to demonstrate
LIDAR foveation for dynamic scenes with an open-loop
algorithm based on motion detection [12].



Figure 4: Adaptive Lidar Sampling. This figure qualitatively demonstrates the flexibility of our adaptive
LIDAR by showing a range of scan patterns. In row 1, a fixed, equi-angular full FOV scan pattern was used. In
row 2, the density of the scan pattern was automatically adapted according to the RGB image’s entropy. In row 3,
columns 1-6, constant sampling density was applied on a rectangular ROI with maximal scene entropy. In row 3,
columns 7-10, the FOV of the scan pattern was kept fixed and a sweep of the sampling density was performed. Note,
with no depth samples, our depth completion model defaults to monocular depth estimation from the colocated
camera, since we randomly sparsified the input depth maps during training to encourage robustness to a range of
sampling densities (including zero samples).

Experimental setup: Our LIDAR engine is a sin-
gle beam Lightware SF30/C with an average power of
0.6mW . This device can produce 1600 depth mea-
surements per second at 100m. Data is captured as
a stream of measurements, and each are time-stamped
by the MEMS direction, given by the voltage V (t).
We modulate the single beam with a 3.6mm Mirror-
cle MEMS mirror. Our current prototype has a range
is 3m and a field-of-view of ≈ 25◦. The laser dot, in
steradians, is 6 × 10−4Ω and this angular support is
consistent over change in MEMS mirror angle.

Calibration and validation: Since our sensor re-
sponse is linear, we apply a 1D calibration to convert
the LIDAR voltages into distances. We evaluate the
quality of our sensor measurements and our calibra-

tion by computing the mean relative error (MRE), root
mean squared error (RMSE), average (log10) error, and
threshold accuracy (δi) of the calibrated depth mea-
surements from our LIDAR. We do this relative to the
“ground-truth” Kinect V2 depths, over all 75 scenes of
our real dataset, and these are reported in Table 3. The
Kinect V2 has an accuracy of 0.5% of the measured
range [2]. Finally, we also captured 10 fronto-planar
scenes (at ranges .5m-3m) and computed the RMSE of
the depth measurements along the plane using the SVD
method: the resulting average RSME was 0.06918m.

4.1. Depth completion

We now describe depth completion for the foveated
measurements of our LIDAR. This builds on existing



Data Method
MRE RMSE log10 δ1 δ2 δ3
(%) (m) (m) (%) (%) (%)

NYU
Mono 8.55 .3800 .0361 90.56 98.08 98.56
Ours 5.89 .2488 .0245 97.69 99.68 99.92

Real
Mono 28.26 .3711 .1090 50.14 87.38 96.00
Ours 12.29 .1668 .0395 85.86 95.89 99.18

Table 4: Base Comparison to Monocular Depth
Estimation. As a baseline, we compare to state-of-
the-art monocular depth estimation [1] (Mono) to our
depth completion method (Ours) on a sub-sampled ver-
sion of the NYUv2 Depth [33] (NYU) dataset and on
our real dataset (Real). Both the monocular depth es-
timation and depth completion methods were trained
only on NYUv2 data. To account for this, monocu-
lar depth estimates were scaled by the ground-truth
median, as in [1]. Such scaling was not performed for
depth completion predictions since the sparse LIDAR
samples provide a reference absolute depth.

work [44, 48] where the sparse depth measurements
are captured by our flexible LIDAR sensor and the
“guide” image is captured by a RGB camera that is co-
located with the sensor. We train a DenseNet-inspired
[19] encoder-decoder network to perform RGB-guided
depth completion of sparse measurements.
Architecture. We adopt [1]’s encoder-decoder net-
work architecture, except that our network has 4 input
channels, as it expects a sparse depth map concate-
nated with an RGB image. The encoder component
of our network is the same as DenseNet 169 minus the
classification layer. The decoder component consists of
a three convolutional blocks followed by a final 3 × 3
convolutional layer. Each bilinear upsampling block
consists of two 3× 3 convolutional layers (with a leaky
ReLU), and 2× 2 max-pooling.
Optimization. We adopt [1]’s loss as a weighted sum
of three terms:

L(y, ŷ) = λLdepth(y, ŷ)+Lgrad(y, ŷ)+LSSIM (y, ŷ) (2)

where y and ŷ denote the ground-truth and estimated
depth maps respectively, and λ denotes a weighting
parameter, which we set to 0.1. The remaining terms
are defined as in [1] which has the full expressions.
Datasets and Implementation: We perform our
evaluations using two datasets: a real dataset captured
with our LIDAR system and a simulated Flexible LI-
DAR dataset generated by sub-sampling the NYUv2
Depth dataset [33]. The real dataset consists of pairs
of RGB images and sparse depth measurements of 75
different scenes captured with our LIDAR system. For
each of the 75 scenes, we also capture a dense “ground-

Data FPS
MRE RMSE log10 δ1 δ2 δ3
(%) (m) (m) (%) (%) (%)

NYU

30 5.89 .2488 .0245 97.69 99.68 99.92
24 5.88 .2430 .0244 97.97 99.70 99.92
18 5.59 .2261 .0233 98.50 99.77 99.94
12 5.65 .2255 .0236 98.52 99.77 99.94
6 5.15 .1879 .0217 99.32 99.91 99.98

Real

30 12.29 .1668 .0395 85.86 95.89 99.18
24 12.09 .1644 .0446 86.34 96.04 99.26
18 11.57 .1578 .0430 87.27 96.61 99.30
12 11.59 .1558 .0435 88.26 97.01 99.33
6 11.19 .1537 .0422 88.10 97.19 99.26

Table 5: Evaluation of Depth Completion. This
table conveys three key features of our system: (1) It
highlights, the trade-off between frame rate and depth
uncertainty, which impacts real-time applications; (2)
it provides a quantitative evaluation of the robustness
of our depth completion algorithm to varying sampling
densities; and (3) provides an illustrative example of
our system flexibility, which can be leveraged for a
range of applications. For frame rates of 30, 24, 18,
12 and 6, the samples per frame were 28, 40, 60, 104
and 231 respectively.

Data Method
MRE RMSE log10 δ1 δ2 δ3
(%) (m) (m) (%) (%) (%)

NYU
Full FOV 5.52 .2392 .0231 98.24 99.86 99.98
Foveated 4.81 .1845 .0202 99.50 99.97 100

Real
Full FOV 15.72 0.1925 .0566 80.30 99.79 99.36
Foveated 13.36 .1589 .0497 83.24 97.80 99.46

Table 6: Depth Completion on Foveated Lidar
Data. “Foveated” means that the scan pattern was
automatically adapted to densely sample a region of in-
terest in the scene. “Full FOV” means that a scene in-
dependent equi-angular scanning pattern was utilized.
In all cases, the “Foveated” and “Full FOV” scan pat-
terns contain the same number of samples (hence, the
equivalent frame rates). Results are evaluated at 30
FPS. Both Full FOV and Foveated errors are computed
only in identical regions of interest, showing foveation
increases accuracy.

truth” depth map using a Kinect V2 depth sensor that
is stereo calibrated with our LIDAR system. All real
dataset images are used exclusively for testing. The
simulated dataset is split into non-overlapping train,
test, and validation scenes.

We train the model described in section 4.1 on a
simulated Flexible LIDAR dataset generated by sub-
sampling the NYUv2 Depth dataset. During training,



Figure 5: Motion-based adaptive sensing. As the
object moves, we use background subtraction to de-
tect the region of interest and the MEMS-modulated
LIDAR puts the samples where the object is located.
Please see supplementary video.

depths were randomly scaled to prevent the network
from overfitting to the color camera used to capture
the RGB images in the NYUv2 dataset. For optimiza-
tion, we used Adam [23] with β1 = 0.9, β2 = 0.999,
ε = 1e − 8, a learning rate of 0.0001, and a batch
size of 4. The learning rate was dropped to 0.00001
after 94k iterations. The first layer used Xavier ini-
tialization, whereas other layers were initialized with
the pre-trained weights from [1] for monocular depth
estimation on NYUv2. To augment the data, we first
randomly resize the input such that the smallest dimen-
sion varies between 640, 832, or 1024. We then apply
a random crop to the reduce the size to 640× 480. In
addition, the RGB channels were randomly shuffled.

As a ‘sanity check’, we confirm that guided depth
completion outperforms monocular depth estimation
using a state-of-the-art network [1] in Table 4.

4.2. Motion-based Foveated Depth Sampling

Our flexible platform allows us to ask if foveated
LIDAR sampling improves depth measurements. We
evaluate our guided depth completion network on
LIDAR data captured with two different sampling
regimes, full field-of-view sampling and foveated sam-
pling in regions of interest, at various frame rates.

Table 5 shows our evaluation for full field-of-view
sampling. Table 6 demonstrates that foveation im-
proves reconstruction in a region of interest, with qual-
itative results in Figures 4 and 5.

We also perform foveated sampling in real-time, us-
ing an open-loop motion-based system to determine the
scan patterns. For a dynamic scene, a foveating LIDAR
can have fewer samples in the right places, decreasing
latency and improving frame-rate. In Fig. 5, we show
objects moving across the scene. At each instance, the
system performs background subtraction to segment a
motion mask. This mask drives the LIDAR sampling,
which has less points than a full dense scan would have,
and therefore has higher sampling rate. In each re-
sult, ROI sampling density was identically dense, and
the rest-of-the-scene density was different and sparser.
The amortized frame rates for the real-time foveated
sequence in rows 1, 2, 3 and 4 of Fig. 5 are 20 FPS,
13 FPS, 9 FPS and 24 FPS. Without foveation, dense
sampling over the entire scene would result in a frame
rate of 6FPS, which is much lower. Note that as the ob-
ject changes position, the ROI changes and the LIDAR
senses a different area. If temporal sampling is not the
focus, then the method can instead densely sample the
points onto the region of interest, increasing the angu-
lar resolution (i.e. zooming). Finally, we note that all
results include depth completion of the measurements,
showing high-quality results.

5. Discussion

Limitations: Our LIDAR engine has a 3m range,
which enables initial feasibility tests and is appropriate
for certain tasks such as gesture recognition. Range ex-
tension is achievable, since the Lightware LIDAR elec-
tronics engine has a 100m outdoor range and is only
reduced by unnecessary optical losses. For future pro-
totypes we wish to remove these losses with a GRIN
lens, as done by [13].

Conclusions: Our LIDAR prototype enables the kind
of adaptive sensing, which, thus far, has only been
shown in simulation and follows a recent trend in com-
putational photography to use data-driven approaches
inside the sensor [7, 10, 9, 40].
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A. Derivations

Here we derive all the formulae in Table 1 for the
three designs. We have provided the ray diagrams of
the designs in Fig. A1 and we have reproduced Table
A1 here.

A.1. Volume

For the retroreflection and single detector, the vol-
ume of the camera is a cone whose vertex is the location
of the single detector. From the ray diagrams and from
the equation of the volume of a cone, this is easily seen

to be
πuw2

o

12 for the retroreflector and πuA2

12 for the single
detector. For the receiver array the volume is the entire
enclosure, given by the volume of a cuboid, u ∗A ∗A.

A.2. FOV

The retroreceiver has the exact same FOV as the
mirror, by definition. From A1(b), the FOV of the
receiver array is given by the vertex angle of the cone
at the central pixel, given by 2atan( A2u ), bounded by
the FOV of the mirror. This assumes the receiver and
transmitter are close enough to ignore angular overlap
issues.

To find the FOV of the single detector, consider the
diagram in Fig. A3, where the single detector is focused
on the laser dot at distance Z from the sensor. From
similar triangles, the kernel size is given by first finding
the in-focus plane at u

′
from the lens equation

1

f
=

1

u′
+

1

Z
(A1)

and so u
′

= fZ
(Z−f) . From the two vertex shared sim-

ilar triangles on the left of the lens, we now have an
expression for the kernel size

∗Equal Contribution

kersize = abs(u− u
′
) ∗ A

u′
(A2)

Substituting the value of u
′
, we get an expression for

kersize = abs(u− fZ

(Z − f)
) ∗ A

fZ
(Z−f)

(A3)

=
A(Z − f)‖(Zu− fu− fZ)‖

fZ‖Z − f‖
(A4)

=
A(Z − f)‖Zu−fu−fZZ−f ‖

fZ
. (A5)

From the figure, the FOV, given by kernelangle is

2atan(
kersize

2u
) = 2atan(

A(Z − f)‖Zu−fu−fZZ−f ‖
2ufZ

)

(A6)

A.3. Received Radiance (RR)

From Fig. A2, the power from the laser decreases
with distance. This is just fall-off from the source, and
we represent it here as the area of the laser dot on
a fronto-parallel plane. From the figure, this can be
calculated from simple trignometry as

2Ztan(
ωlaser

2
), (A7)

and we use the reciprocal for the RR as

1

2Ztan(ωlaser

2 )
. (A8)

1. Receiver array: The receiver array is assumed to
capture all the available radiance from the laser dot,
and so the RR is exactly the same as the power fall-off
described above as



Sensor Technology Outdoors Textureless Adaptive
ELP-960P2CAM Conventional Passive Stereo X × ×

Kinect v2 Time-of-Flight (LED) × X ×
Intel RealSense Structured Light Stereo (LED) X X ×

Velodyne HDL-32E Time-of-Flight (Laser) X X ×
Resonance MEMS / Intel L515 Time-of-Flight (Laser) X X ×

Robosense RS-LiDAR-M1 Solid State Time-of-Flight (Laser) X X ×
Programmable Light curtains Adaptive Structured Light X X X

Our sensor Adaptive LIDAR X X X

Table A1: Our Adaptive LIDAR vs. other common modalities.

1

2Ztan(ωlaser

2 )
. (A9)

2. Retroreflection: As can be seen in the right of
Fig. A2, the ratio of the received angle to the trans-
mitted angle gives the fraction of the received radiance
from the laser dot. From Fig. A1(a), the single de-
tector receives parallel light of width wo. For any par-
ticular depth Z therefore, the angle subtended by this
width at the sensor decreases and is given by

ωreceiver = 2atan(
wo
2Z

) (A10)

and the fraction of the fall-off received is given by

2atan(wo

2Z )

ωlaser
. (A11)

Multiplying this with the fall-off above gives

2atan(wo

2Z )

ωlaser
∗ 1

2Ztan(ωlaser

2 )
(A12)

=
atan(wo

2Z )

wlaserZtan
ωlaser

2

. (A13)

Note this assumes that ωreceiver < ωlaser, and if
this is not the case then a max function must be added
so that ωreceiver does not exceed ωlaser.

3. Single detector: We just reduce the fall-off by the
ker-angle calculated before, and therefore the RR is

1

kerangle ∗ 2Ztan(ωlaser

2 )
(A14)

=
1

4Zatan(
A(Z−f)‖Zu−fu−fZ

Z−f ‖
2ufZ )tan(ωlaser

2 )
(A15)

B. Single detector and proposed modifi-
cation

Our approach is based on a simple observation; plac-
ing the image plane between the lens and the focus, i.e.
v < f , will guarantee that the laser dot will never be
in focus. For imaging photographs, this is not desir-
able, but for detecting the LIDAR system’s received
pulse, amplitude is less important than timing infor-
mation (i.e. pulse peak in our case). Further, this op-
tical setup ensures that the angular extent of the dot
is nearly constant over a large set of ranges. To see
this, consider the second column of the table for our
design. When u < f and z >> f , the FOV becomes

2atan(A(f−u)
2uf ). Suppose u << f , then we can rewrite

as 2atan(
A(1−u

f )

2u ), which becomes 2atan( A2u ), which is
near-constant. This is supported by simulations dis-
cussed in the main paper in Figures 2 and 3.

Of course, for the conventional approach, when
u = f , there is a low FOV since the laser dot is
sharply in focus. This is supported by simulations
in Figures 2 and 3 in the main paper, for settings of
f = 15mm,A = 100mm, over a range of sensor sizes
and ranges. Therefore, the FOV degenerates to a small
value, where received radiance is also the highest. Our
design does not suffer this depth-dependent FOV vari-
ation and is consistent across the range. However, as
shown in the right of the figure, this results in a low
received radiance since the system is always defocused.
In practice we find the consistent FOV to be more valu-
able than received radiance, and, further, depth com-
pletion can improve raw measurements.

B.1. Analysis of Sensor Design Tradeoffs

Retro-reflective receivers: If high-quality lasers
such as erbium fiber lasers [41] are used, where M is
near-unity, then these can be coupled with a co-located
receiver and a beamsplitter, as shown in Fig. 2I(a),
where the detector lens distance is equal to the focal
length u = f . Consider the second column from Ta-



Figure A1: Ray diagrams of designs

Figure A2: Retroreflective Received Radiance

Figure A3: Single Detector Received Radiance

ble 2. The ratio of retro-reflective volume to our sen-
sor’s volume is wo

A , which is usually less than one, since
MEMS mirrors are small.

In other words, retro-reflective designs are smaller
than ours. The small retroreflective design also has
the optimal FOV of the MEMS, due to co-location.
Our design does have a received radiance advantage,
since retroreflection requires the MEMS mirror to be
the aperture for both receiver/transmitter. Fig. 3(Ia)
shows how this advantage eventually trumps other fac-
tors such as laser quality (M = 1) or large mirrors.
In the extreme case of low-cost diodes, Fig. 3(Ib), our
sensor has higher received radiance at close ranges too.
Receivers arrays: If cost and size are not issues,
the receiver can be made large, such as a custom-built,
large SPAD array [8] or a parabolic concentrator for
1.5mm detectors [41]. Comparing such arrays’ vol-
ume, in Table 2’s second column, we can easily see the
cuboid-cone ratio of 12/π favors our design, and is un-
surprisingly shown in Fig. 3(II) (left) across multiple
focal lengths.

On the other hand, it is clear that a large receiver
array would have higher received radiance, due to hav-

ing a bigger effective aperture, when compared with
our MEMS mirror. This is demonstrated in Fig. 3(II)
(right) for the particular case of M = 100, wo = 5mm,
favoring our design. Despite this, large arrays have
higher received radiance at all depths.
Conventional Single detector: Our approach is
close to the conventional single pixel receiver, which
can allow for detection over a non-degenerate FOV if
it is defocused, as shown for a scanning LIDAR by
[42]. When the laser dot is out of focus, some part of
it activates the single photodetector. If the laser dot
is in focus, the activation area available is smaller, but
more concentrated. Next we describe and analyze our
modification to the conventional single detector.


