
Supplementary Material:
Revealing Scenes by Inverting Structure from Motion Reconstructions

Francesco Pittaluga1 Sanjeev J. Koppal1 Sing Bing Kang2 Sudipta N. Sinha2

1 University of Florida 2 Microsoft Research

A. Implementation Details
In the supplementary material we describe our network

architecture and the training procedure in more details.

A.1. Architecture

Our network architecture consists of three sub-networks
– VISIBNET, COARSENET and REFINENET. The input to
our network is an H ⇥ W ⇥ n dimensional feature map
where at each 2D location in the feature map where there is
a valid sample, we have one n-dimensional feature vector.
This feature vector is obtained by concatenating different
subsets of depth, color, and SIFT features which are associ-
ated with each 3D point in the SfM point cloud. Except for
the number of input/output channels in the first/final layers,
each sub-network has the same architecture, that of a U-Net
with an encoder and a decoder and with skip connections
between the layers in the encoder and decoder networks at
identical depths. In contrast to conventional U-Nets, where
the decoder directly generates the output, in our network,
the output of the decoder is passed through three convolu-
tional layers in sequence to obtain the final output.

More, specifically, the architecture of the encoder is
CE256 - CE256 - CE256 - CE512 - CE512 - CE512, where CEN de-
notes a convolutional layer with N kernels of size 4⇥4 and
stride equal to 2 followed by an addition of a bias, batch
normalization, and a ReLU operation.

The architecture of the decoder is CD512 - CD512 - CD512 -
CD256 - CD256 - CD256 - C128 - C64 - C32- C3, where CDN de-
notes nearest neighbor upsampling by a factor of 2 followed
by a convolutional layer with N kernels of size 3 ⇥ 3 and
a stride equal to 1, followed by an addition of a bias, batch
normalization, and a ReLU operation. CN layers are the
same as CDN layers but without the upsampling operation.
In the final layer of the decoder, the ReLU is replaced with
a tanh non-linearity. In REFINENET, all ReLU operations
are replaced by leaky ReLU operations in all the layers of
the decoder network. In VISIBNET, the final layer of the
decoder has 1 kernel instead of 3.

Our discriminator used for adversarial training of
REFINENET has the following architecture – CA256 - CA256 -
CA256 - CA512 - CA512 - CA512 - FC1024 - FC1024 - FC1024 - FC2,
where CAN denotes a convolutional layer with N kernels

of size 3 ⇥ 3 and stride equal to 1 followed by a 2 ⇥ 2
max pooling operation followed by an addition of a bias,
batch normalization, and a leaky ReLU operation. FCN
denotes a fully connected layer with N nodes followed
by an addition of a bias, and a leaky ReLU operation. In
the final layer, the leaky ReLU is replaced by a softmax
function.

A.2. Optimization

We used the Adam optimizer with �1 = 0.9, �2 = 0.999,
✏ = 1e�8 and a learning rate of 0.0001 for training all
networks. Images with resolution 256 ⇥ 256 pixels were
used as input to the network during training. However, the
trained network was used to process images at a resolution
of 512 ⇥ 512 pixels. During training, we resized each im-
age such that the smaller dimension of the resized image
was randomly assigned to either 296, 394, or 512 pixels, af-
ter which we applied a random 2D cropping to the resized
image to obtain a 256 ⇥ 256 image which was the actual
input to our network. We used Xavier initialization for all
the parameters of our network.

B. Additional Results
We now present qualitative results to show that our net-

work is robust to 2D input which is very sparse. Figure A1
shows two example results. Three images are synthesized
on randomly selected 20%, 60% and 100% of all the pro-
jected 3D points for the scenes. Despite the high simulated
2D sparsity in the input, the output images are quite inter-
pretable. Figure A2 shows some failure examples.

Supplementary Video. Finally, we encourage the reader
to view the supplementary video which makes it easier to
visualize the qualitative results shown in the main paper.
For two scenes, where the SfM camera poses are available,
we show that we can reconstruct the source video by run-
ning our method on a frame by frame basis with the camera
poses for the source images. Finally, we show results of
synthesizing images from novel camera viewpoints. Such
results can be used to create virtual tours of the scene, thus
making it easier to reveal and the appearance, layout and
geometry of the scene.



(a) Sparse Input (20%) (b) Using 20% (c) Using 60% (d) Using all (e) Original Images

Figure A1: EVALUATING ROBUSTNESS TO SPARSITY: Two sets of images synthesized using our complete pipeline, by
running VISIBNET, COARSENET and REFINENET. From left to right: (a) Simulated sparse inputs to our networks. Here,
only 20% of the 3D points in the respective SfM models were used. Image synthesized using our method using (b) 20% of
the points, (c) 60% of the points, (d) all the points and (e) the original source images. Even when the inputs are extremely
sparse, most of the contents of the synthesized images can be easily recognized.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure A2: FAILURE EXAMPLES: (a) Dense points on the building in the background overwhelms a few sparse points in the
foreground on the base of the statue. VISIBNET in this case incorrectly predicts that the building is visible and this causes the
base of the statue to disappear completely in the synthesized image. (b) A similar artifact for a different scene. (c) Parallel
straight lines are sometimes poorly handled, such as the lines on the vertical pillars of the monument. (d) The complex
occlusions in the architectural structure produce artifacts where the occluded surfaces and the occluders are fused into each
other. (e) Straight lines are often reconstructed as curved or bent (f–g) Low sample density in the input common in indoor
scenes results in blurry and wavy edges. (h) Finally, spurious 3D points may cause our method to hallucinate structures such
as the dark line on the wall which is not actually there.


